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Abstract

This report describes work performed from June 2012 throughMay 2014 as a part of a Sandia
Early Career Laboratory Directed Research and Development(LDRD) project led by the first au-
thor. The objective of the project is to investigate methodsfor building stable and efficient proper
orthogonal decomposition (POD)/Galerkin reduced order models (ROMs): models derived from a
sequence of high-fidelity simulations but having a much lower computational cost. Since they are,
by construction, small and fast, ROMs can enable real-time simulations of complex systems for on-
the-spot analysis, control and decision-making in the presence of uncertainty. Of particular interest
to Sandia is the use of ROMs for the quantification of the compressible captive-carry environment,
simulated for the design and qualification of nuclear weapons systems. It is an unfortunate reality
that many ROM techniques are computationally intractable or lack ana priori stability guarantee
for compressible flows. For this reason, this LDRD project focuses on the development of tech-
niques for building provably stable projection-based ROMs. Model reduction approaches based on
continuous as well as discrete projection are considered.

In the first part of this report, an approach for building energy-stable Galerkin ROMs for lin-
ear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using
continuous projection is developed. The key idea is to applya transformation induced by the Lya-
punov function for the system, and to build the ROM in the transformed variables. It is shown that,
for many PDE systems including the linearized compressibleEuler and linearized compressible
Navier-Stokes equations, the desired transformation is induced by a special inner product, termed
the “symmetry inner product”. Attention is then turned to nonlinear conservation laws. A new
transformation and corresponding energy-based inner product for the full nonlinear compressible
Navier-Stokes equations is derived, and it is demonstratedthat if a Galerkin ROM is constructed
in this inner product, the ROM system energy will be bounded in a way that is consistent with the
behavior of the exact solution to these PDEs, i.e., the ROM will be energy-stable. The viability of
the linear as well as nonlinear continuous projection modelreduction approaches developed as a
part of this project is evaluated on several test cases, including the cavity configuration of interest
in the targeted application area.

In the second part of this report, some POD/Galerkin approaches for building stable ROMs using
discrete projection are explored. It is shown that, for generic linear time-invariant (LTI) systems, a
discrete counterpart of the continuous symmetry inner product is a weightedL2 inner product ob-
tained by solving a Lyapunov equation. This inner product was first proposed by Rowleyet al., and
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is termed herein the “Lyapunov inner product”. Comparisonsbetween the symmetry inner product
and the Lyapunov inner product are made, and the performanceof ROMs constructed using these
inner products is evaluated on several benchmark test cases. Also in the second part of this report,
a new ROM stabilization approach, termed “ROM stabilization via optimization-based eigenvalue
reassignment”, is developed for generic LTI systems. At theheart of this method is a constrained
nonlinear least-squares optimization problem that is formulated and solved numerically to ensure
accuracy of the stabilized ROM. Numerical studies reveal that the optimization problem is com-
putationally inexpensive to solve, and that the new stabilization approach delivers ROMs that are
stable as well as accurate.

Summaries of “lessons learned” and perspectives for futurework motivated by this LDRD project
are provided at the end of each of the two main chapters.
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Chapter 1

Introduction

Numerous modern-day engineering problems require the simulation of complex systems with tens
of millions or more unknowns. Despite improved algorithms and the availability of massively
parallel computing resources, “high-fidelity” models are,in practice, often too computationally
expensive for use in a design or analysis setting. An exampleof an application area of interest
to Sandia in which this situation arises is the quantification of the captive-carry environment for
the design of nuclear weapons systems (illustrated in Figure 1.1). Since a weapons bay and its
contents experience large unsteady pressure loads when exposed to the grazing external flow field,
special care must be taken to design these components such that they are able to withstand loads
of this magnitude. Large Eddy Simulations (LES) with very fine meshes and long run times are
required to predict accurately these dynamic loads. The simulations can take on the order ofweeks
to complete even when run in parallel on state-of-the-art supercomputers. The fact that they need
to be repeated numerous times in a design, qualification and/or uncertainty quantification (UQ)
setting presents an intractable computational burden. This situation has prompted researchers to
develop reduced order models (ROMs): models constructed from high-fidelity simulations that
retain the essential physics and dynamics of their corresponding full order models (FOMs), but
have a much lower computational cost. Since ROMs are, by construction, small, they can enable
uncertainty quantification as well as on-the-spot decisionmaking and/or control.

In order to serve as a useful predictive tool, a ROM should possess the following properties: con-
sistency (with respect to its corresponding high-fidelity model), stability, and convergence (to the
solution of its corresponding high-fidelity model). The second of these properties, namely nu-
merical stability, is particularly important, as it is a prerequisite for studying the convergence and
accuracy of a ROM. It is well-known that popular model reduction approaches known as the proper
orthogonal decomposition (POD) method [88, 12, 50] and the balanced proper orthogonal decom-
position (BPOD) method [95, 79] lack, in general, ana priori stability guarantee. It is emphasized
that instability of POD/BPOD ROMs is areal problem in some applications, notably in the field of
fluid mechanics, where it is encountered in compressible and/or high Reynolds number flows (pre-
cisely the dynamics that are modeled in the targeted application area, the captive carry problem!).
While there does exist a model reduction technique that has arigorous stability guarantee, known
as balanced truncation [73, 42], the computational cost of this method, which requires the com-
putation and simultaneous diagonalization of infinite controllability and observability Gramians,
makes this method computationally intractable for systemsof very large dimensions (i.e., systems
with more than 10,000 degrees of freedom [81]).
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(a) Weapons bay of
an airplane

(b) Compressible cavity with ob-
ject

(c) 2D cross-section of compressible cavity

Figure 1.1. Compressible captive-carry problem

The objective of this Sandia National Laboratories’ Laboratory Directed Research and Develop-
ment (LDRD) project is to explore new approaches for developing stable and efficient reduced
order models, and to study the viability of these models in predicting the dynamics of the com-
pressible cavities modeled in the targeted captive-carry application. The project has theoretical as
well as practical milestones:

• Theoretical: To develop novel stability-preserving model reduction approaches that could
impact Sandia as well as the broader scientific community.

• Practical: To create software that enables the numerical study of the approaches developed
as a part of this project.

The model reduction approaches identified as the most promising in this report will be imple-
mented in the Sandia in-house LES flow solver,SIGMA CFD, currently used to simulate the captive-
carry environment. Thus, the work described herein can be seen as a necessary first step towards
providing a breakthrough capability for a mission-critical Sandia application.

The remainder of this report is organized as follows.

• Chapters 2–4 contain some preliminaries. Chapter 2 gives a brief literature review summariz-
ing various approaches to building stable POD/Galerkin ROMs. Several notions of stability
that are employed throughout this report are defined in Chapter 3. Projection-based model
reduction, in particular, the POD/Galerkin method is overviewed in Chapter 4. Two projec-
tion approaches are detailed and compared/contrasted: continuous projection and discrete
projection.
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• Chapter 5 focuses on the development of energy-stable ROMs for linear as well as non-
linear conservation laws using continuous projection. First, the linear case is considered.
The energy-stable model reduction approach developed specifically for the equations of lin-
earized compressible inviscid flow in [20] is extended to generic linearized conservation
laws. The key idea is to apply a transformation induced by theLyapunov function for the
system, and to build the ROM in the transformed variables. Itis shown that, for many lin-
earized PDE systems of the hyperbolic and incompletely parabolic type, the desired trans-
formation is induced by a special weightedL2 inner product, termed the “symmetry inner
product”. Next, a new methodology for building energy-stable ROMs for the full nonlinear
compressible Navier-Stokes equations is developed. The approach is based on a carefully
constructed transformation and energy inner product derived for the PDEs of interest. The
proposed linear as well as nonlinear model reduction approaches are evaluated on several
test cases, including the compressible cavity problem of interest, following a discussion of
the ROM code (known asSpirit) in which the methods are implemented.

• Chapter 6 explores stability-preserving model reduction approaches based on discrete pro-
jection. It is demonstrated that a discrete weightedL2 inner product first derived by Rowley
et al. in [81] and termed herein the “Lyapunov inner product” is a discrete counterpart
of the symmetry inner product (introduced in Chapter 5). Theweighting matrix that de-
fines the Lyapunov inner product can be computed in a black-box fashion for a stable linear
time-invariant (LTI) system arising from the discretization of a linear system of PDEs in
space. Some numerical studies of POD ROMs constructed in theLyapunov inner product
are performed, and comparisons are made to balanced truncation. Next, a new approach for
stabilizing projection-based ROMs for LTI systems is developed, termed ROM stabilization
via eigenvalue reassignment [61]. In this approach, a constrained nonlinear least-squares
optimization problem that minimizes the error in the ROM output (thereby maximizing the
accuracy of the ROM) is formulated. The said optimization problem is small, with at most
as many degrees of freedom (dofs) as the number of dofs in the ROM, and therefore compu-
tationally inexpensive to solve. Numerical results revealthat the new stabilization approach
delivers ROMs that are both stable and accurate.

• Some conclusions, a summary of “lessons learned”, and perspectives for future work are
discussed at the end of each of the two main chapters of this report, Chapter 5 and Chapter
6.

The reader is referred to the following SAND reports and articles written during the time of this
LDRD project for more details on the topics described in thisreport: [55, 59, 60, 61, 35].

In addition to these publications, the ideas summarized herein were communicated to the broader
scientific community in the following presentations given by the Principal Investigator (PI):

• I. Kalashnikova, S. Arunajatesan. “A Stable Galerkin Reduced Order Model (ROM) for
Compressible Flow”.10th World Congress on Computational Mechanics (WCCM X)(in-
vited), Sao Paulo, Brazil, July 13, 2012.

• I. Kalashnikova, S. Arunajatesan. “Towards Feedback Control of Compressible Flows Using

17



Galerkin Reduced Order Models”.Second International Workshop on Model Reduction for
Parameterized Systems (MoRePaS II), Schloss Reisensburg, Gunzburg, Germany, Oct. 2–5,
2012.

• I. Kalashnikova, S. Arunajatesan, B. van Bloemen Waanders.“Energy-Stable Galerkin Re-
duced Order Models for Prediction and Control of Fluid Systems”. SIAM Conference on
Computational Science and Engineering (CSE13)(invited), Boston, MA, Feb. 26, 2013.

• I. Kalashnikova , B. van Bloemen Waanders, S. Arunajatesan,M. Barone. “Stabilization
of Galerkin Reduced Order Models (ROMs) for LTI Systems Using Controllers”. SIAM
Conference on Control and Its Applications (CT13), San Diego, CA, July 9, 2013.

• I. Kalashnikova, B. van Bloemen Waanders, S. Arunajatesan,M. Barone. “Stabilized Projection-
Based Reduced Order Models for Uncertainty Quantification”. SIAM Conference on Uncer-
tainty Quantification (SIAM UQ14), Savannah, GA, Mar. 31–Apr. 3, 2014.

• I. Kalashnikova, J. Fike, M. Barone, S. Arunajatesan. “Energy-stable Galerkin Reduced
Order Models (ROMs) for Nonlinear Compressible Flow”.11th World Congress on Com-
putational Mechanics (WCCM XI), Barcelona, Spain, July 20–25, 2014.
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Chapter 2

Literature review

As mentioned in Chapter 1, reduced order models constructedusing the POD/Galerkin method
(Chapter 4) lack in general ana priori stability guarantee. The stability of these reduced models
is commonly evaluateda posteriori: a ROM is constructed, used to predict some dynamical be-
havior, and subsequently deemed a success if the solutions generated by the ROM are numerically
stable and accurately reproduce the expected behavior. There is some risk inherent in this sort of
analysis: there is always the possibility that the ROM solution will exhibit non-physical unstable
dynamics, which can lead to practical limitations of the ROM. Unfortunately, ROM instability is a
real problem in some applications, including the targeted compressible cavity problem: as demon-
strated in [25], a compressible fluid POD/Galerkin ROM mightbe stable for a given number of
modes, but unstable for other choices of basis size.

Before beginning the discussion of the stability-preserving model reduction methods studied and
developed as a part of this LDRD project, a concise review of existing approaches for building
stable projection-based ROMs is given. It is noted that there doesexist a projection-based model
reduction technique possessing a rigorous stability guarantee, namely balanced truncation [73,
10], but this method is not considered here as it is not practical for the problem of interest: it
is computationally intractable for systems having more than 10,000 dofs [81], and is, in general,
limited to linear problems.

A literature search reveals that approaches for developingstability-preserving projection-based
ROMs based on the POD fall into several categories.

The first category of methods derives (a priori) a stability-preserving model reduction framework,
often specific to a particular equation set. In [81], Rowleyet al. show that Galerkin projection
preserves the stability of an equilibrium point at the origin if the ROM is constructed in an “energy-
based” inner product. In [20, 57], Baroneet al. demonstrate that a symmetry transformation leads
to a stable formulation for a Galerkin ROM for the linearizedcompressible Euler equations [20, 57]
and nonlinear compressible Navier-Stokes equations [55] with solid wall and far-field boundary
conditions. In [85], Serreet al. propose applying the stabilizing projection developed by Barone
et al. in [20, 57] to a skew-symmetric system constructed by augmenting a given linear system
with its adjoint system. This approach yields a ROM that is stable at finite time even if the solution
energy of the full-order model is growing. In [86, 87], Sirisupet al. develop a method for correcting
long-term unstable behavior for POD models using a spectralviscosity (SV) diffusion convolution
operator. The advantage of approaches such as these is they are physics-based, and guarantee

19



a priori a stable ROM; the downside is that they can be difficult to implement, as access to the
high-fidelity code and/or the governing partial differential equations (PDEs) is often required.

Another category of methods is aimed to remedy the so-called“mode truncation instability”. These
methods [5, 76, 22, 15, 92], motivated by the observation that higher order modes can give rise to
non-physical instabilities in the ROM system, are often physics-based and minimally intrusive to
the ROM. In [15], a ROM stabilization methodology that achieves improved accuracy and stability
through the use of a new set of basis functions representing the small, energy-dissipation scales of
turbulent flows is derived by Balajewiczet al. The stabilization of ROMs using shift modes and
residual modes was proposed in [76] and [22] by Noacket al. and Bergmannet al. respectively.
Other authors, e.g., Terragniet al. [92], have demonstrated that the stability and performanceof a
ROM can be improved by adapting the POD manifold to the local dynamics.

In a third category of approaches, an unstable ROM is stabilized through a post-processing (a pos-
teriori) stabilization step applied to an unstable algebraic ROM system. Ideally, the stabilization
only minimally alters the ROM physics, so that the ROM’s accuracy is not sacrificed. In [7], Am-
sallemet al. propose a method for stabilizing projection-based linear ROMs through the solution of
a small-scale convex optimization problem. In [24], a set oflinear constraints for the left-projection
matrix, given the right-projection matrix, are derived by Bondet al. to yield a projection framework
that is guaranteed to generate a stable ROM. In [94], Zhuet al. derive some LES closure models
for POD ROMs for the incompressible Navier-Stokes equations, and demonstrate numerically that
the inclusion of these LES terms yields a ROM with increased numerical stability. In [32], Couplet
et al. propose methods for correcting the behavior of a low-order POD-Galerkin system through
a coefficient calibration/minimization. A nice feature of these and similar approaches is that they
are easy to implement: often the stabilization step can be applied in a “black-box” fashion to an
algebraic ROM system that has already been constructed. However, the approaches can give rise
to inconsistencies between the ROM and FOM physics, therebylimiting the accuracy of the ROM.

Other ROM approaches, e.g., the Gauss–Newton with Approximated Tensors (GNAT) method of
Carlberget al. [27], circumvent the stability issue by formulating the ROMat the fully discrete
level, that is, by projecting the ROM equations only after they have been discretized in space as
well as in time. Various heuristics for obtaining stable ROMs have also been noted. For example, in
[8], Amsallemet al. suggest that projection-based ROMs constructed for LTI systems in descriptor
form tend to possess better numerical stability propertiesthan those constructed for LTI systems in
non-descriptor form.

The approaches described in this report fall into the first (Chapter 5 and Section 6.1) and third
categories (Section 6.2) summarized above.
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Chapter 3

Stability definitions

As stated in Chapter 1, this LDRD project focuses on the development of projection-based ROMs
that possess ana priori stability guarantee. Before beginning this discussion, some general defi-
nitions of stability that will be used in the subsequent analysis are reviewed. Of particular interest
is the concept of energy-stability, which appears in the stability proofs given in subsequent chap-
ters. The term energy-stability is defined in Section 3.1, and related to more classical definitions
of stability, e.g., Lyapunov stability, asymptotic stability, exponential stability and time-stability,
in Sections 3.2–3.3.

3.1 Energy-stability

The concept of energy-stability originated in the literature involving the numerical analysis of
spectral and finite difference discretizations to time-dependent PDEs [40, 47, 45]. It has also
appeared in the Galerkin finite element method literature, e.g., [44, 67], where the energy-method
was employed to derive stable Galerkin methods for hyperbolic conservation laws. It is well-known
that physical systems admit a certain energy structure. Thebasic idea behind building energy-stable
ROMs is that a ROM constructed for such systems should preserve this energy structure. Among
the authors who have explored the concept of energy-stability in the context of model reduction
are Rowleyet al. [79] and Kwasniok [66]. In [79], Rowleyet al. introduced a family of “energy-
based” inner products for the purpose of constructing stable Galerkin ROMs for fluid problems. In
[66], Kwasniok recognized the role of energy conservation in ROMs of nonlinear, incompressible
fluid flow for atmospheric modeling applications, and proposed a Galerkin projection approach in
which the ROM conserves turbulent kinetic energy or turbulent enstrophy.

The notion of energy-stability will be introduced in the context of a specific canonical model
problem, then generalized. Consider, without loss of generality, the following scalar initial value
problem, known as a Cauchy problem [64]:

ẋ(t) = L (x(t)), t ≥ 0
x(0) = f.

(3.1)

Here,L denotes a linear differential operator with constant coefficients,f ∈ Rn is the initial con-
dition, andx(t) ∈ R

n is the system state at timet ≥ 0. The operatorL is said to be semi-bounded
with respect to an inner product(·, ·) if it satisfies the following inequality for all sufficiently
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smooth functionsw ∈ L2:

(w,L w)≤ α(w,w), (3.2)

whereα ∈ R. The following theorem (quoted from [64]) states the conditions under which the
Cauchy problem (3.1) is well-posed.

Theorem 3.1.1 [64]: The Cauchy problem (3.1) is well-posed if and only if the operator L is
semi-bounded with respect to an inner product(·, ·) which corresponds to a norm equivalent to the
L2 norm.

Consider now a Galerkin approximation to (3.1), denoted here byxN, and satisfying

(ẋN,φφφ) = (L (xN),φφφ), (3.3)

for all φφφ sufficiently smooth, and supposeL is semi-bounded with respect to(·, ·). Settingφφφ = xN

in (3.3) leads to the following energy estimate for the Galerkin approximation:

dEN

dt
≤ 2αEN, (3.4)

whereEN ≡ 1
2||xN||2 denotes the energy of the Galerkin approximationxN, and|| · || is the norm

induced by the inner product(·, ·). Applying Gronwall’s lemma ((A.1) in Appendix A.1) to (3.4)
gives the inequality

||xN(t)|| ≤ e
1
2αt ||xN(0)||. (3.5)

The result (3.5) says that the energy of the numerical solution to (3.3) is bounded in a way that is
consistent with the behavior of the energy of the exact solution to the original differential equation
(3.1), i.e., the numerical solution is energy-stable. Thisdefinition can be extended to a generic
ROM system.

Definition 3.1.2 (Energy-Stability [45]):A ROM system is called energy-stable if

EM(t)≤ eαtEM(0), (3.6)

for some constantα ∈R, where

EM ≡
1
2
||xM||2 (3.7)

is the system energy of the ROM numerical solutionxM, and|| · || is a norm equivalent to theL2

norm.

In general, a ROM system is not guaranteed to satisfy Definition 3.1.2 even if the underlying
initial boundary value problem (IBVP) is well-posed and thefull order system arising from the
discretization of the governing PDEs in space is stable. However, it is often possible to ensure
(3.6) holds for the ROM system through a careful selection ofthe reduced trial and test basesΦΦΦM

andΨΨΨM and/or the inner product in which the projection step of the model reduction is performed
(Chapters 5 and 6).
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3.2 Lyapunov, asymptotic and exponential stability

The concept of energy-stability can be related to classicalnotions of stability, namely Lyapunov
stability, asymptotic stability and exponential stability. Consider an autonomous nonlinear dynam-
ical system:

ẋ = f(x), x ∈ R
n, (3.8)

wheref ∈ Rn is a given function, subject to some initial conditionx(0) = x0. Let xe be an equilib-
rium point of the system (3.8), meaningf(xe) = 0 for all t ≥ 0.

Definition 3.2.1 (Lyapunov, asymptotic and exponential stability) [11]: The equilibrium pointxe

of (3.8) is said to be:

(a) Lyapunov stableif ∀ε > 0 there exists aδ (ε) > 0 such that if||x(0)−xe||< δ , then||x(t)−
xe||< ε ∀t ≥ 0.

(b) Asymptotically stableif there exists aδ > 0 such that if||x(0)−xe||< δ , then limt→∞ ||x(t)−
xe||= 0.

(c) Exponentially stableif there existα,β ,δ > 0 such that if||x(0)− xe|| < δ , then ||x(t)−
xe|| ≤ α||x(0)−xe||e−β t ∀t ≥ 0.

In other words, if an equilibrium point of (3.8) is Lyapunov stable, solutions within a distance
δ > 0 from it will remain a distanceε > 0 from it for all time; if it is asymptotically stable,
solutions within this distance will eventually converge tothe equilibrium; if it is exponentially
stable, the solutions will not only converge, but at an exponential rate. In general, exponential
stability implies asymptotic stability, and asymptotic stability implies Lyapunov stability.

The following theorem, known as the Lyapunov Stability Theorem [11], can be used to characterize
the stability of an equilibrium pointxe for (3.8).

Theorem 3.2.2 (Lyapunov Stability Theorem) [11]:Let V be a non-negative function onRn and
let V̇ represent the time derivative ofV along trajectories of the system dynamics (3.8), i.e.,V̇ =
∂V
∂x ẋ = ∂V

∂x f(x). Let Br = Br(xe) be a ball of radiusr around an equilibrium pointxe of (3.8). If
there exists anr > 0 such thatV is positive definite anḋV is negative semi-definite for allx ∈ Br ,
thenxe is Lyapunov stable.

The functionV defined in Theorem 3.2.2 above is known as the Lyapunov function for the system
(3.8). Observe that the numerical energyEN defined in (3.7) satisfies the definition of a Lyapunov
function (Theorem 3.2.2) ifdEN

dt ≤ 0. Thus, if a ROM is energy-stable withα = 0 (Definition
3.1.2), then the ROM is Lyapunov stable. In Chapter 5 and Section 6.1, it is shown how Theorem
3.1.2 can be used to define a stability-preserving inner product for building stable ROMs.

The stability concepts introduced above simplify for the specific case of linear systems. It is
straightforward to verify that for linear systems, asymptotic and exponential stability are equiva-
lent. Moreover, the following result holds.
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Theorem 3.2.3 (Asymptotic Stability Theorem for Linear Systems) [11]: A linear ROM system of
the formdxM

dt = AMxM is asymptotically (and exponentially) stable if and only ifall the eigenvalues
of the ROM system matrixAM have strictly negative real parts.

Theorem 3.2.3 is commonly used to check numerically (a posteriori) the stability of a linear ROM
constructed for a linear system (Sections 5.5, 6.1.1 and 6.2.4).

3.3 Time-stability

Another form of stability is what is referred to herein as “time-stability”. Essentially, a system that
is time-stable is one whose solution will not “blow up” (i.e., produce an unbounded output) given a
finite input and/or non-zero initial condition. For a general nonlinear system, exponential stability
implies time-stability, but time-stability is a stronger notion than asymptotic stability [48]. Since
exponential and asymptotic stability are equivalent for linear systems, asymptotic stabilitydoes
imply time-stability in this special case.

The concept of time-stability can also be defined in terms of the system energy.

Definition 3.3.1 (Time-Stability [45]):A ROM system is called time-stable if the numerical energy
of the ROM solution is non-increasing in time for an arbitrary time step, i.e., if

dEN

dt
≤ 0. (3.9)

It is straightforward to demonstrate that a time-stable scheme is also energy-stable. Suppose a
ROM is time-stable, so the ROM solution satisfies the energy estimate (3.9). Applying Gronwall’s
lemma ((A.1) in Appendix A.1) to this inequality,EN(t)≤ EN(0). Thus, (3.6) holds withα = 0.

In general, the converse of the above statement does not hold: energy-stability does not necessarily
imply time-stability. This is to be expected. The practicalimplication of a ROM possessing the
energy-stability property is that its numerical solution is bounded in a way that is consistent with
the behavior of the exact solutions of the governing equations. It is possible in general that the
governing PDEs support instabilities. In this case, an energy-stable ROM may possess unbounded
solutions ast→ ∞, as (it can be argued) it should, if these unbounded solutions are physical.
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Chapter 4

Proper Orthogonal Decomposition
(POD)/Galerkin method to model reduction

In this chapter, the POD/Galerkin method to model reductionis overviewed. The POD/Galerkin
method is a projection-based method. The projection step ofthe model reduction (Section 4.3) can
be performed at either the discrete or continuous level of the governing equations. In the discrete
projection approach, a semi-discrete (or fully discrete [27]) representation of the equations is pro-
jected onto the POD modes in a discrete inner product. In contrast, in the continuous projection
approach, the Galerkin projection step is applied to the continuous system of PDEs in a continu-
ous inner product onto a continuous representation of the POD basis. A comparison of these two
projection methodologies is deferred until Section 4.3.

Consider a generic PDE (or system of PDEs) of the form

ẋ(t) = L (x(t))+N (x(t)), (4.1)

in an open bounded domainΩ. In (4.1),L : Rn→ Rn is a linear spatial differential operator, and
N : Rn→ Rn is a nonlinear spatial differential operator. The symbolt denotes time, andx ∈ Rn

is called the state vector. The ‘·’ symbol denotes differentiation with respect to time, i.e., ẋ≡ ∂x
∂ t .

Suppose the PDE system (4.1) has been discretized in space using some numerical scheme, e.g.,
the finite element method. The result will be a semi-discretenonlinear system of the form:

ẋN(t) = AxN(t)+N(xN(t)), (4.2)

wherexN ∈ RN is the discretized state vector,A ∈ RN×N is a temporally-constant matrix arising
from the discretization of the linear operatorL in (4.1), andN∈RN is a nonlinear function arising
from the discretization of the nonlinear operatorN in (4.1).

The general approach to projection-based model reduction consists of three steps, described below
(Sections 4.1– 4.3).

Step 1: Calculation of reduced trial and test bases, denoted byΦΦΦM =
(

φφφ1, · · · , φφφM

)

and
ΨΨΨM =

(

ψψψ1, · · · , ψψψM

)

respectively, each of orderM, with M << N.

Step 2: Approximation of the solution to (4.1) or (4.2) by

x(t)≈
M

∑
i=1

xM,i(t)φφφ i = ΦΦΦMxM(t), (4.3)
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wherexM,i(t) are the unknown ROM coefficients or modal amplitudes, to be determined in solving
the ROM.

Step 3: Substitution of the approximation (4.3) into the governingsystem ((4.1) or (4.2)) and
projection of this system onto the reduced test basis.

The result of this procedure is a “small” (sizeM << N) dynamical system that, for a suitable
choice of reduced bases, accurately describes the dynamicsof the full order system for some set
of conditions. The reduced basesΦΦΦM ∈ RN×M andΨΨΨM ∈ RN×M are functions of space but not
time, and are assumed to have full column rank. In the case that ΨΨΨM 6= ΦΦΦM, the projection is
referred to as a Petrov-Galerkin projection. Otherwise, ifΨΨΨM = ΦΦΦM, the projection is referred
to as a Galerkin projection. This terminology is introducedhere as it will be shown later that
the energy-stable model reduction approaches derived in this work are effectively Petrov-Galerkin
methods.

4.1 Calculation of the reduced bases (Step 1)

There exist a number of approaches for calculating the reduced basis modes (Step 1of the model
reduction), e.g., the POD method [88, 12, 50], the BPOD method [95, 79], the balanced truncation
method [73, 42], the reduced basis method [93, 83]; also methods based on goal-oriented bases
[25], generalized eigenmodes [17], and Koopman modes [82].Attention is restricted here to the
POD basis, but it is noted that the energy-stability resultsderived in this report hold foranychoice
of reduced basis. The reason for the choice of the POD reducedbasis is two-fold. First, the POD
is a widely used approach for computing efficient bases for dynamical systems. Moreover, ROMs
constructed via the POD/Galerkin method lack in general ana priori stability guarantee (meaning
POD/Galerkin ROMs would benefit from stability-preservingmodel reduction approaches such as
those developed herein).

Discussed in detail in Lumley [71] and Holmeset al. [50], POD is a mathematical procedure that,
given an ensemble of data and an inner product, denoted generically by (·, ·), constructs a basis for
the ensemble. This basis is optimal in the sense that it describes more energy (on average) of the
ensemble in the chosen inner product than any other linear basis of the same dimensionM. The
ensemble{xk : k= 1, . . . ,K} is typically a set ofK instantaneous snapshots of a numerical solution
field, taken forK values of a parameter of interest, or atK different times. Mathematically, POD
seeks anM-dimensional (M << K) subspace spanned by the set{φφφ i} such that the projection of
the difference between the ensemblexk and its projection onto the reduced subspace is minimized
on average. It is a well-known result [20, 50, 65, 78] that thesolution to the POD optimization
problem reduces to the eigenvalue problem

Rφφφ = λφφφ , (4.4)

whereR is a self-adjoint and positive semi-definite operator with its (i, j) entry given byRi j =
1
K

(

xi,x j
)

for 1≤ i, j ≤ K. If it is assumed thatR is compact, then there exists a countable set
of non-negative eigenvaluesλi with associated eigenfunctionsφφφ i . It can be shown [50, 71] that
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the set ofM eigenfunctions, or POD modes,{φφφ i : i = 1, . . . ,M} corresponding to theM largest
eigenvalues ofR is precisely the desired basis. This is the so-called “method of snapshots” for
computing a POD basis [88].

4.2 Approximation of solution in reduced basis(Step 2)

Once the reduced basis is calculated, the solutionx(t) is approximated as a linear combination of
the reduced basis modes (4.3) (Step 2). Given this approximation, the following error formula can
be shown for the POD [50, 65]:

1
K

K

∑
i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xi−
M

∑
j=1

(

xi ,φφφ j

)

φφφ j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=
J

∑
k=M+1

λk, (4.5)

whereJ = dim
({

x1, ...,xK
})

, and whereλ1 ≥ ... ≥ λJ > 0 are the positive eigenvalues of the
operatorR (4.4).

Typically, the size of the reduced basis is chosen based on anenergy criterion. That is,M is selected
to be the minimum integer such that

EPOD(M)≥ tol, (4.6)

where 0≤ tol≤ 1 represents the snapshot energy represented by the POD basis, and

EPOD(M)≡ ∑M
i=1 λi

∑K
i=1 λi

. (4.7)

4.3 Projection (Step 3)

There are two approaches for performingStep 3of the model reduction: continuous and discrete
projection. These approaches are described, as well as compared and contrasted, in the present
subsection. Stability-preserving methods for constructing ROMs using these approaches will be
detailed in Chapters 5 and 6.

4.3.1 Model reduction via continuous projection

In the continuous projection approach [20, 57], the continuous system of PDEs (4.1) is projected
onto a continuous reduced test basis{ψψψ i}Mi=1∈R

n in a continuous inner product(·, ·), for example,
the usualL2 inner product1

(

x(1),x(2)
)

=
∫

Ω
x(1)Tx(2)dΩ, (4.8)

1Weighted variants of theL2 inner product are considered later in this work.
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where thexM,i(t) are the unknown ROM coefficients or modal amplitudes
(

so thatxT
M ≡

(

xM,1, · · · , xM,M
))

, to be determined in solving the ROM dynamical system (derived below).

Substituting (4.3) into (4.1), the following is obtained

M

∑
i=1

ẋM,i(t)φφφ i = L

(

M

∑
i=1

xM,i(t)φφφ i

)

+N

(

M

∑
i=1

xM,i(t)φφφ i

)

. (4.9)

Next, a reduced test basis{ψψψ i}Mi=1 ∈ Rn is introduced, and the system of PDEs (4.9) is projected
onto the reduced test basis modesψψψ j for j = 1,2, ...,M in the inner product(·, ·) to yield

M

∑
i=1

ẋM,i(t)
(

ψψψ j ,φφφ i

)

=

(

ψψψ j ,L

(

M

∑
i=1

xM,i(t)φφφ i)

))

+

(

ψψψ j ,N

(

M

∑
i=1

xM,i(t)φφφ i

))

, (4.10)

for j = 1,2, ...,M. Typically, the reduced trial and test basesφφφ i andψψψ i are chosen to be orthonor-
mal in the inner product(·, ·), so that(ψψψ j ,φφφ i)= δi j , whereδi j denotes the Krönecker delta function.
Invoking this property, as well as the linearity property ofthe operatorL , (4.10) simplifies to

ẋM, j(t) = ∑M
i=1xM,i(t)

(

ψψψ j ,L (φφφ i)
)

+
(

ψψψ j ,N
(

∑M
i=1xM,i(t)φφφ i

)

)

, (4.11)

for j = 1,2, ...,M. The equations (4.11) define a set ofM time-dependent nonlinear ordinary
differential equations (ODEs) for the modal amplitudesxM, j(t) in (4.3).

4.3.2 Model reduction via discrete projection

In the discrete projection approach, the FOM ODE system (4.2) (the PDE system (4.1) discretized
in space) is projected onto a discrete reduced test basis in adiscrete inner product. Suppose this
discrete inner product is the following weightedL2 inner product:

(

x(1)
N ,x(2)

N

)

P
= x(1)T

N Px(2)
N , (4.12)

whereP∈RN×N is a symmetric positive-definite matrix. LetΦΦΦM ∈RN×M andΨΨΨM ∈RN×M denote
the reduced trial and reduced test bases for (4.2), respectively. Assume these matrices have full
column rank, and are orthonormal in the inner product (4.12), so thatΨΨΨT

MPΦΦΦM = IM, whereIM

denotes theM×M identity matrix. The first step in constructing a ROM for (4.2) using discrete
projection is to approximate the solutionxN(t) by (4.3). Substituting (4.3) into (4.2), and projecting
this system onto the reduced test basis, the followingM×M dynamical system is obtained:

ẋM(t) = AMxM(t)+NM (xM(t)) , (4.13)

where
AM = ΨΨΨT

MPAΦΦΦM, NM(xM) = ΨΨΨT
MPN(ΦΦΦMxM) . (4.14)
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4.3.3 Continuous vs. discrete projection

In the majority of applications of reduced order modeling, the discrete projection approach is em-
ployed in constructing the ROM. This discrete approach has the advantage that boundary condition
terms present in the discretized equation set are often (depending on the implementation) inherited
by the ROM; that is, the ROM solution will satisfy the boundary conditions of the FOM. Certain
properties of the numerical scheme used to solve the full equations may be inherited by the ROM
as well. The discrete approach can be black-box, at least forlinear systems ((4.2) withN = /0):
it operates on the matrixA only, so that access to the high-fidelity code that was used togen-
erate this matrix or the governing PDEs is not required providedA can be written out from the
high-fidelity code. In contrast, the continuous projectionapproach is tied to the governing PDEs
– the continuous problem (4.9) needs to be translated to the discrete setting, e.g., by interpolating
the reduced basis modes and evaluating the continuous innerproducts in (4.11) using a numerical
quadrature [20]. Although the continuous approach is inherently an embedded method, its similar-
ity to spectral numerical approximation methods allows theuse of analysis techniques employed
by the spectral methods community [16, 57].

Which of the two projection approaches described above (continuous vs. discrete projection) is
preferred depends on the application and the type of model reduction approach sought (e.g., em-
bedded vs. black-box). The discussion in the remainder of this report is intended to aid the reader
in selecting one of these approaches for his or her problem ofinterest.

Note that, regardless of which projection approach is used to build the ROM, the ROM dynamical
system will have the form (4.13), as (4.11) has this form whenwritten as a matrix problem. The
solution to the ROM is obtained by advancing (4.13) forward in time using a time-integration
scheme. This stage of the model reduction is known as the “online stage”. The preceding steps
(the collection of the snapshots used to build the reduced bases andSteps 1–3above) comprise the
“offline stage” of the model reduction.

4.4 Efficiency considerations

It is straightforward to see that the projection of the linear operator in (4.1) or (4.2) can be computed
just one time prior to the online time-integration step of the model reduction; in particular, it need
not be recomputed in each time or Newton step of the model reduction. This is also the case when
the nonlinear operatorN has only polynomial nonlinearities. To see this, supposeN (·) has a
cubic nonlinearity:

N (x(t)) = x3(t). (4.15)

The projection of (4.15) onto the reduced test basis modes isthen:

(

ψψψ j ,N

(

M

∑
i=1

xM,i(t)φφφ i

))

=
M

∑
l=1

M

∑
m=1

M

∑
n=1

xM,l (t)xM,m(t)xM,n(t)
(

ψψψ j ,φφφ l φφφmφφφn

)

, (4.16)
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for j = 1, ...,M. The inner product tensor
(

ψψψ j ,φφφ l φφφmφφφn

)

needs to be computed just once in the

offline stage of the model reduction.

In the caseN (and henceN) has non-polynomial nonlinearities, the projection of this termcannot
be pre-computed prior to the time-integration (online) stage of the model reduction. The cost of
performing this inner product isO(N), whereN is the number of degrees of freedom in the FOM
and often very large (N >> M). Hence, “direct” treatment, or computation, of these inner products
would invalidate the termreducedorder model. A number of interpolation methods to overcome
this difficulty have been proposed, e.g., the discrete empirical interpolation method (DEIM) [29],
“best points” interpolation [74, 75], or gappy POD [33].

In the nonlinear systems considered herein (the compressible Navier-Stokes equations; Section
5.3), the equations and inner products are formulated such that the resulting systems have only
polynomial nonlinearities, so that the projection of the nonlinear terms can be computed once in
the offline stage of the model reduction and stored for use during the online stage. Hence, the
nonlinear interpolation methods mentioned above are not used. Note, however, that the efficiency
of the nonlinear ROMs may nonetheless be improved with interpolation of the nonlinear terms.
This is because it requiresO(Mp+1) operations to evaluate the tensor arising from the projection

of the nonlinear terms (e.g., the inner product tensor
(

ψψψ j ,φφφ lφφφmφφφ n

)

in (4.16) forp = 3), wherep

is the degree of nonlinearity in the functionN . This can amount to a cost ofO(N) operations for
p >> 2 and moderateM.

4.5 Special case: linear time-invariant (LTI) systems

The POD/Galerkin model reduction approach described aboveis now applied to a special kind of
system that will be considered in Chapter 6, namely a linear time-invariant, or LTI, system. A
system is called time-invariant if the output response for agiven input does not depend on when
that input is applied [11].

At the continuous level, an LTI system can be represented by aPDE (or system of PDEs) of the
form

ẋ(t) = L (x(t))+Lc(u(t)),
y(t) = Lo(x(t)),

(4.17)

in Ω. Here,u ∈Rp represents the vector of control variables, andy ∈Rq is the measured signal or
output. The operatorL : Rn→ Rn is a smooth linear spatial-differential operator, like thelinear
operator that appears in (4.1). The operatorsLc : Rp→ Rn andLo : Rn→ Rq are smooth linear
mappings. The abstract operatorsL , Lc andLo are introduced to keep the discussion as general
as possible, and used in subsequent analysis.

If the PDE system (4.17) is discretized in space using some numerical scheme, e.g., the finite
element method, the result is a semi-discrete LTI system of the form:

ẋN(t) = AxN(t)+BuP(t),
yQN(t) = CxN(t).

(4.18)

30



Here,uP∈R
P is the discretized vector of control variables, andyQN∈R

Q is the discretized output;
A ∈RN×N, B ∈RN×P andC ∈RQ×N are constant matrices (in particular, they are not functions of
time t).

The first two steps of the model reduction approach for (4.17)or (4.18) are identical to the more
general nonlinear case considered above. The step that yields a slightly different (simpler) result
is the Galerkin projection step. Substituting (4.3) into (4.17), and projecting onto the reduced test
basis in the continuous(·, ·) inner product, invoking the orthonormality of the reduced test and
reduces trial basis functions, the following is obtained:

ẋM, j(t) = ∑M
i=1xM,i(t)

(

ψψψ j ,L (φφφ i)
)

+
(

ψψψ j ,Lc(u(t))
)

,

yQM(t) = ∑M
i=1xM,i(t)Lo(φφφ i),

(4.19)

for j = 1,2, ...,M. The equations (4.19) define a set ofM time-dependent linear ODEs for the
modal amplitudesxM,i(t) in (4.3), whereyQM is a reduced approximation of the output.

Similarly, substituting (4.3) into (4.18), and projectingthis system onto the reduced test basis in
the discrete inner product (4.12), the followingM×M LTI system is obtained:

ẋM(t) = AMxM(t)+BMuP(t),
yQM(t) = CMxM(t),

(4.20)

where
AM = ΨΨΨT

MPAΦΦΦM, BM = ΨΨΨT
MPB, CM = CΦΦΦM. (4.21)

The matricesAM, BM andCM can be pre-computed and stored in the offline stage of the model
reduction – in particular, they need not be re-computed at each time step of the online time-
integration stage of the ROM. Note that, when written in matrix form, the ROM constructed via
continuous projection (4.19) has exactly the form (4.20).
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Chapter 5

Stable ROMs via continuous projection

As stated in Chapter 1, the targeted application of the ROM approaches developed as a part of
this LDRD project is the compressible captive-carry problem. For this problem, the govern-
ing PDEs are the nonlinear compressible Navier-Stokes equations in the high Reynolds number
regime. These PDEs are given in Section 5.3. A literature search [18] reveals that the majority of
POD/Galerkin model reduction approaches for fluid flow are based on the incompressible version
of these equations. For the incompressible Navier-Stokes equations, the natural choice of inner
product for the Galerkin projection step of the model reduction procedure is theL2 inner product.
This is because, in these models, the solution vector is taken to be the velocity vectoru, so that
||u||L2 is a measure of the global kinetic energy in the domain, and the POD modes optimally
represent the kinetic energy present in the ensemble from which they were generated. The same
is not true for the compressible Navier-Stokes equations. Hence,if a compressible fluid ROM is
constructed in theL2 inner product, the ROM solution may not satisfy the conservation relation
implied by the governing equations, and may exhibit non-physical instabilities.

It is shown in this chapter that the ROM instability problem described above can be remedied by
designing a special energy inner product in which to do the Galerkin projection step of the model
reduction procedure for compressible flow problems.

In Section 5.1, an energy-stability preserving model reduction approach is developed for conser-
vation laws of the hyperbolic and incompletely parabolic type. It is shown that a certain trans-
formation applied to a generic hyperbolic or incompletely parabolic set of PDEs and induced by
the Lyapunov function for these equations will yield a Galerkin ROM that is stable for any choice
of reduced basis. It is shown in Section 5.2 that, for linear PDEs, the desired transformation is
induced by a special weightedL2 inner product, termed the “symmetry inner product”. The sym-
metry inner product is given for several systems of physicalinterest: the linearized compressible
Euler equations, the linearized compressible Navier-Stokes equations, the wave equation, and the
linearized shallow water equations (Sections 5.2.1–5.2.3).

In Section 5.3, attention is turned to developing energy-stable ROMs for the nonlinear compress-
ible Navier-Stokes equations. Three forms of these equations are considered:

• The standard form of the compressible Navier-Stokes equations in the primitive variables,
density, velocity and temperature (Section 5.3.1).

• The so-calledζ–form of the compressible Navier-Stokes equations, which uses specific vol-
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ume instead of density and pressure instead of temperature,and has a lower degree nonlin-
earity than the standard form (Section 5.3.2).

• The nonlinear compressible isentropic Navier-Stokes equations in the velocity and enthalpy
variables, valid for cold flows (Section 5.3.3).

An energy-based inner product for the third form of the equations of interest (the nonlinear com-
pressible isentropic Navier-Stokes equations) was introduced by Rowleyet al. in [81]. This inner
product induces a meaningful physical quantity for these equations, namely the integrated stagna-
tion energy or stagnation enthalpy, and is reviewed here as it motivates the formulation of anew
transformation and corresponding energy inner product forthe full compressible Navier-Stokes
equations in the standard primitive variable form. The normassociated with this inner product
induces a conserved quantity for a given flow: the total energy. If the projection step of the model
reduction is performed in the total energy inner product, the resulting Galerkin ROM should pre-
serve the stability of an equilibrium point at the origin forthe compressible Navier-Stokes system.

Following a discussion of the compressible flow ROM code (known asSpirit) developed as a
part of this project (Section 5.4), the performance of the various ROM approaches described in
this chapter is evaluated on several test cases in Section 5.5, including a viscous laminar cavity
problem. The chapter ends with a summary of some key observations and “lessons learned” from
the various numerical experiments performed. Also included is a discussion of prospects for future
work.

More detail on the content described in this chapter can be found in the following journal articles
and SAND reports, written during the time of this LDRD project: [59, 55, 35, 18, 60, 61].

5.1 A stabilizing transformation for conservation laws

In this section, an approach for building energy-stable ROMs via continuous Galerkin projection
is developed for PDE systems of the form:

q̇+A i
∂q
∂xi
−K i j

∂ 2q
∂xi∂x j

+Gq = f. (5.1)

In (5.1), q ∈ Rn denotes a vector of unknowns,f ∈ Rn is a source term,A i , K i j andG aren×n
matrices, where 1≤ i, j ≤ d, with d denoting the number of spatial dimensions, andn∈ N. The
matricesA i, K i j andG could be a function of space, but they are assumed to be steady(not a
function of timet). The so-called Einstein notation (implied summation on repeated indices) has
been employed in (5.1) and subsequent expressions. Most conservation laws, as well as many
PDEs of physical interest, can be written in the form (5.1). If K i j = 0 ∀i, j, (5.1) is known as a
hyperbolic system [46]. Otherwise, ifK i j 6= 0, (5.1) is known as an incompletely parabolic system
[46].
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Suppose there exists a transformation

T : Rn → Rn,
q → v,

(5.2)

such that in the new variablesv, the system (5.1) has the form

v̇+AS
i

∂v
∂xi
−KS

i j
∂ 2v

∂xi∂x j
+GSv = fS, (5.3)

where:

• Property 1:The matricesAS
i are symmetric for all 1≤ i ≤ d.

• Property 2:The matricesKS
i j are symmetric for all 1≤ i, j ≤ d.

• Property 3:The augmented viscosity matrix:

KS≡







KS
11 . . . KS

1d
...

. . .
...

KS
d1 . . . KS

dd






(5.4)

is positive semi-definite.

Theorem 5.1.1:Suppose a ROM for (5.3) is constructed using continuous Galerkin projection in
theL2(Ω) inner product. Suppose the matrices in (5.3) satisfyProperties 1–3above. Suppose also
that the reduced basis modes satisfy the boundary conditions of the full order system, or they are
implemented weakly in the ROM in a stability-preserving way1. Let vM denote the ROM solution
to (5.3). Then the ROM is energy-stable with energy estimate

||vM(·,T)||2≤ e
1
2βST ||vM(·,0)||2, (5.5)

whereβS is an upper bound on the eigenvalues of the matrix

BS≡ ∂AS
i

∂xi
+

∂ 2KS
i j

∂xi∂x j
−2GS. (5.6)

Moreover, this energy-stability result holds foranychoice of reduced basis.

Proof.To prove energy-stability of a ROM constructed for (5.3), itis necessary to bound the energy
of the ROM solution to (5.3) withfS = 0:

dEM
dt = 1

2
d
dt ||vM ||22

= 1
2

d
dt (vM ,vM)

=
(

vM , ∂vM
∂ t

)

=
(

vM ,−AS
i

∂vM
∂xi

+KS
i j

∂ 2vM
∂xi ∂xj

−GSvM

)

=−∫Ω vT
MAS

i
∂vM
∂xi

∂Ω+
∫

Ω vT
MKS

i j
∂ 2vM

∂xi ∂xj
∂Ω− ∫Ω vT

MGSvM∂Ω.

(5.7)

1The reader is referred to [57] and Appendix A.5 for a discussion of stability-preserving weak implementations of
boundary conditions for ROMs constructed using the continuous projection approach. In general, a weak implemen-
tation of boundary conditions will be stability-preserving provided the boundary conditions are well-posed.
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Each of the terms in (5.7) will be bounded separately. First,

−∫Ω vT
MAS

i
∂vM
∂xi

∂Ω =−1
2

∫

Ω
∂

∂xi

(

vT
MAS

i vM
)

dΩ+ 1
2

∫

Ω vT
M

∂AS
i

∂xi
vMdΩ

=−1
2

∫

∂Ω vT
MAS

i nivMdΓ+ 1
2

∫

Ω vT
M

∂AS
i

∂xi
vMdΩ.

(5.8)

In (5.8), the property that each of the matricesAS
i is symmetric has been employed (Property 1).

The symbolΓ has been used to denote the boundary ofΩ, ∂Ω.

Next, note that:

KS
i j

∂ 2vM
∂xi∂x j

= ∂
∂xi

(

KS
i j

∂vM
∂x j

)

−
(

∂KS
i j

∂xi

∂vM
∂x j

)

. (5.9)

Then,
∫

Ω vT
MKS

i j
∂ 2vM

∂xi∂xj
∂Ω =

∫

Ω vT
M

∂
∂xi

(

KS
i j

∂vM
∂xj

)

dΩ− ∫Ω vT
M

∂KS
i j

∂xi

∂vM
∂xj

∂Ω. (5.10)

Again, each of the two terms in (5.10) will be bounded separately.

∫

Ω vT
M

∂
∂xi

(

KS
i j

∂vM
∂xj

)

dΩ =−∫Ω
∂vM
∂xi

T
KS

i j
∂vM
∂xj

dΩ+
∫

∂Ω vT
MKS

i j
∂vM
∂xj

nidΓ
≤ ∫∂Ω vT

MKS
i j

∂vM
∂xj

nidΓ,
(5.11)

provided the matrix (5.4) is positive semi-definite (Property 3).

Now for the second term in (5.10):

−
∫

Ω vT
M

∂KS
i j

∂xi

∂vM
∂x j

∂Ω =−1
2

∫

Ω
∂

∂x j

(

vT
M

∂KS
i j

∂xi
vM

)

dΩ+ 1
2

∫

Ω vT
M

∂ 2KS
i j

∂xi∂x j
vMdΩ

=−1
2

∫

∂Ω vT
M

∂KS
i j

∂xi
n jvMdΓ+ 1

2

∫

Ω vT
M

∂ 2KS
i j

∂xi∂x j
vMdΩ.

(5.12)

In (5.12), the property that theKS
i j matrices and therefore their derivatives are symmetric hasbeen

employed (Property 2).

Finally, (5.8) and (5.10) are substituted into (5.7). The boundary integral terms may be neglected
if the reduced basis modes satisfy the boundary conditions or the boundary conditions have been
implemented in a stability-preserving way. The following bound is obtained:

1
2

d
dt ||vM||22 ≤ 1

2

∫

Ω vT
M

(

∂AS
i

∂xi

)

vMdΩ+ 1
2

∫

Ω vT
M

∂ 2KS
i j

∂xi∂x j
vMdΩ− ∫Ω vT

MGSvM∂Ω
= 1

2

∫

Ω vT
MBSvMdΩ,

(5.13)

whereBS is given by (5.6). Applying Gronwall’s inequality ((A.1) inAppendix A.1) to (5.13), it
is found that:

||vM(·,T)||2≤ e
1
2βST ||vM(·,0)||2, (5.14)

whereβS is an upper bound on the eigenvalues of the matrixBS (5.6).

�

The proof of Theorem 5.1.1 is one of the new contributions of this report.
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Note that, ifG = 0 in (5.1) and theA i andK i j matrices are spatially-constant, it follows thatβS= 0
in (5.14). In this case, if the ROM for (5.1) is constructed inthe variablesv, the ROM will be time-
stable as well as stable in the sense of Lyapunov, in additionto being energy-stable. For linearized
conservation laws (e.g., the linearized shallow water equations, the linearized compressible Euler
equations, the linearized compressible Navier-Stokes equations), the property thatG = 0 and the
A i andK i j are spatially-constant will in general hold if the base flow is spatially uniform.

5.2 Stability-preserving “symmetry inner product” for lin ear
conservation laws

A key property of systems of the form (5.1) is that they are symmetrizable [47, 20, 57]; that is, it
is possible to derive a symmetric positive-definite matrixH such that:

• Property 1∗: The matricesHA i are symmetric for all 1≤ i ≤ d.

• Property 2∗: The matricesHK i j are symmetric for all 1≤ i, j ≤ d.

• Property 3∗: The augmented viscosity matrix:

KH ≡







HK 11 . . . HK 1d
...

. . .
...

HK d1 . . . HK dd






(5.15)

is positive semi-definite.

SinceH is symmetric positive-definite, the following defines a valid inner product:
(

q(1),q(2)
)

(H,Ω)
≡
∫

Ω
q(1)THq(2)dΩ. (5.16)

Following the terminology introduced in [20, 57], the innerproduct (5.16) will be referred to as
the “symmetry inner product”. It is straightforward to see that the following corollary to Theorem
5.1.1 holds.

Corollary 5.2.1:Suppose a ROM for (5.1) is constructed using continuous Galerkin projection in
the symmetry inner product (5.16). SupposeProperties 1∗-3∗ hold. Suppose also, as in Theorem
5.1.1, that the reduced basis modes satisfy the boundary conditions of the full order system, or
they are implemented weakly in the ROM in a stability-preserving way. LetqM denote the ROM
solution to (5.1). Then the ROM is energy-stable with energyestimate

||qM(·,T)||(H,Ω) ≤ e
1
2βHT ||qM(·,0)||(H,Ω), (5.17)

whereβH is an upper bound on the eigenvalues of the matrix

BH ≡ ∂ (HA i)

∂xi
+

∂ 2(HK i j )

∂xi∂x j
−2HG. (5.18)
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Moreover, this energy-stability result holds foranychoice of reduced basis.

Proof. Because of simple linear transformations, the proof is analogous to the proof of Theorem
5.1.1.

�

Again, in the case thatG = 0 and theA i andK i j matrices are spatially-constant, it will follow from
Corollary 5.2.1 that a ROM constructed in the symmetry innerproduct (5.16) will be time-stable
and stable in the sense of Lyapunov, in addition to being energy-stable.

It is interesting to observe that a Galerkin projection of the governing (5.1) in the symmetry inner
product (5.16) is equivalent to a Petrov-Galerkin projection. Let φφφ i for i = 1, ...,M denote the
reduced trial basis vector for the solutionq. Performing a Galerkin projection of the equations
(5.1) onto the modesφφφk gives

∫

Ω
φφφT

k H
(

q̇+A i
∂q
∂xi

+K i j
∂ 2q

∂xi∂x j
+Gq

)

dΩ =
∫

Ω
φφφ T

k HfdΩ, (5.19)

for k= 1, ...,M. Equation (5.19) is equivalent to a Petrov-Galerkin projection of the equations (5.1)
in the regularL2 inner product

∫

Ω
ψψψT

k

(

q̇+A i
∂q
∂xi

+K i j
∂ 2q

∂xi∂x j
+Gq

)

dΩ =
∫

Ω
ψψψT

k fdΩ, (5.20)

where the reduced test basis functions are given byψψψk = Hφφφk, for all k = 1, ...,M.

5.2.1 Application to linearized compressible Euler equations

Consider the linearized compressible Euler equations. These equations may be used if a compress-
ible fluid system can be described by inviscid, small-amplitude perturbations about a steady-state
mean flow. The equations are obtained from the full (nonlinear) compressible Euler equations by
decomposing the fluid vectorq(x, t) into a steady mean plus an unsteady fluctuation, i.e.,

q(x, t) = q̄(x)+q′(x, t), (5.21)

and linearizing these equations around the steady mean state q̄. If qT =
(

u1, u2, u3, ζ , p
)

,
whereu1, u2 andu3 are the three components of the velocity vector,ζ is the specific volume (the
reciprocal of the density), andp is the pressure. The linearized compressible Euler equations take
the form

q̇+A i
∂q′

∂xi
+Gq′ = 0. (5.22)
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In 3D, the convective flux matricesA i in the linearized compressible Euler hyperbolic system
(5.22) are given by:

A1 =













ū1 0 0 0 ζ̄
0 ū1 0 0 0
0 0 ū1 0 0
−ζ̄ 0 0 ū1 0
γ p̄ 0 0 0 ū1













, A2 =













ū2 0 0 0 0
0 ū2 0 0 ζ̄
0 0 ū2 0 0
0 −ζ̄ 0 ū2 0
0 γ p̄ 0 0 ū2













,

A3 =













ū3 0 0 0 0
0 ū3 0 0 0
0 0 ū3 0 ζ̄
0 0 −ζ̄ ū3 0
0 0 γ p̄ 0 ū3













.

(5.23)

The matrixG in (5.22) is a function of the gradients of the base flow:

G =













ū1,1 ū1,2 ū1,3 p̄,1 0
ū2,1 ū2,2 ū2,3 p̄,2 0
ū3,1 ū3,2 ū3,3 p̄,3 0
ζ̄,1 ζ̄,2 ζ̄,3 −ū j , j 0
p̄,1 p̄,2 p̄,3 γū j , j 0













. (5.24)

In the above matrices,γ = CP/CV is the ratio of specific heats. The reader may verify that if the
linearized compressible Euler system (5.22) is pre-multiplied by the following symmetric positive
definite matrix:

H =















ρ̄ 0 0 0 0
0 ρ̄ 0 0 0
0 0 ρ̄ 0 0
0 0 0 α2γρ̄2p̄ ρ̄α2

0 0 0 ρ̄α2 (1+α2)
γ p̄















, (5.25)

whereα is a real, non-zero parameter, the convective flux matricesHA i are all symmetric [20, 57].

5.2.2 Application to linearized compressible Navier-Stokes equations

Consider the 3D linearized compressible Navier-Stokes equations. These equations are appropri-
ate when a compressible fluid system can be described by viscous, small-amplitude perturbations
about a steady-state base flow. As with the linearized compressible Euler equations, to derive these
equations from the full (nonlinear) compressible Navier-Stokes equations, the fluid vectorq(x, t) is
written as the sum of a steady mean plus an unsteady fluctuation (5.21), and a linearization around
the steady mean is performed. If the viscous work terms are neglected from the equations2 (appro-
priate, for example, in a low Mach number regime), the resultis a linear incompletely parabolic

2To the authors’ knowledge, the viscous work terms are invariably neglected from the linearized compressible
Navier-Stokes equations by researchers studying energy-stability of these equations [47, 4]. The omission of these
terms is justified only in the low Mach number regime, or in thecase that the base flow is uniform. The extension of
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system of the form

q̇′+A i
∂q′

∂xi
− ∂

∂xi

(

K i j
∂q
∂x j

)

+Gq′ = 0. (5.26)

If the fluid vector is given byqT =
(

u1, u2, u3, T, ρ
)

, whereT and ρ denote the fluid
temperature and density respectively, the matrices that appear in (5.26) are given by the expressions
found in [47], repeated below to keep this document self-contained

A1≡















ū1 0 0 R RT̄
ρ̄

0 ū1 0 0 0
0 0 ū1 0 0

T̄(γ−1) 0 0 ū1 0
ρ̄ 0 0 0 ū1















, A2≡















ū2 0 0 0 0
0 ū2 0 R RT̄

ρ̄
0 0 ū2 0 0
0 T̄(γ−1) 0 ū2 0
0 ρ̄ 0 0 ū2















,

A3≡















ū3 0 0 0 0
0 ū3 0 0 0
0 0 ū3 R RT̄

ρ̄
0 0 T̄(γ−1) ū3 0
0 0 ρ̄ 0 ū3















,

(5.27)

G =















ū1,1 ū1,2 ū1,3
R
ρ̄ ρ̄,1

1
ρ̄ (ūi ū1,i +RT̄,1)

ū2,1 ū2,2 ū2,3
R
ρ̄ ρ̄,2

1
ρ̄ (ūi ū2,i +RT̄,2)

ū3,1 ū3,2 ū3,3
R
ρ̄ ρ̄,3

1
ρ̄ (ūi ū3,i +RT̄,3)

T̄,1 T̄,2 T̄,3 (γ−1)ūi,i
1
ρ̄ (ūiT̄,i +(γ−1)T̄ūi,i)

ρ̄,1 ρ̄,2 ρ̄,3 0 ūi,i















, (5.28)

and

K11≡ 1
ρ̄Re













2µ + λ 0 0 0 0
0 µ 0 0 0
0 0 µ 0 0
0 0 0 γκ

Pr 0
0 0 0 0 0













, K12≡ 1
ρ̄Re













0 λ 0 0 0
µ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, (5.29)

K13≡ 1
ρ̄Re













0 0 λ 0 0
0 0 0 0 0
µ 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, K21≡ 1
ρ̄Re













0 µ 0 0 0
λ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, (5.30)

K22≡
1

ρ̄Re













µ 0 0 0 0
0 2µ + λ 0 0 0
0 0 µ 0 0
0 0 0 γκ

Pr 0
0 0 0 0 0













, K23≡
1

ρ̄Re













0 0 0 0 0
0 0 λ 0 0
0 µ 0 0 0
0 0 0 0 0
0 0 0 0 0













, (5.31)

the energy-stability symmetrization approach presented here to the linearized compressible Navier-Stokes equations
in which the viscous work terms are retained is the subject ofpresent research. The linearized compressible Navier-
Stokes equations with the viscous work terms retained are given in Appendix A.2.
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K31≡
1

ρ̄Re













0 0 µ 0 0
0 0 0 0 0
λ 0 0 0 0
0 0 0 0 0
0 0 0 0 0













, K32≡
1

ρ̄Re













0 0 0 0 0
0 0 µ 0 0
0 λ 0 0 0
0 0 0 0 0
0 0 0 0 0













, (5.32)

K33≡
1

ρ̄Re













µ 0 0 0 0
0 µ 0 0 0
0 0 2µ + λ 0 0
0 0 0 γκ

Pr 0
0 0 0 0 0













. (5.33)

The parameters3 appearing in the viscous stress matricesK i j are: the Lamé viscosity coefficients
λ andµ, the thermal diffusivityκ , the Prandtl numberPr, and the Reynolds numberRe. The reader
can verify that if the system (5.1) is pre-multiplied by the symmetric positive definite matrix given
by

H ≡















ρ̄ 0 0 0 0
0 ρ̄ 0 0 0
0 0 ρ 0 0
0 0 0 ρ̄R

T̄(γ−1)
0

0 0 0 0 RT̄
ρ̄















, (5.34)

the “symmetrized” convective flux matricesHA i and diffusive flux matricesHK i j satisfyProper-
ties 1∗–3∗ in Section 5.2. Here,Rdenotes the non-dimensional universal gas constant.

Note that the symmetry transformation exhibited above is not unique. For example, in [4], Abar-
banelet al. exhibit a transformation of the form (5.3) in the linearizedcompressible Navier-Stokes
equations written in the primitive variablesqT =

(

ρ, u1, u2, u3, p
)

.

5.2.3 Application to other hyperbolic systems (e.g., shallow water equations,
wave equation)

It is straightforward to derive the symmetrizerH for a number of other physical systems commonly
of interest to the scientific community. The symmetrizers for two such systems are given in Table
5.1: the 1D wave equation and the 3D linearized shallow waterequations. For the former equation,
the wave equation, the original second order PDE ¨u = a2∂ 2u

∂x2 wherea∈R denotes the wave speed,
has been written as a first order system. The latter set of PDEs, namely the 3D linearized shallow
water equations, are obtained from the full (nonlinear) shallow water equations by decomposing
the fluid vectorq(x, t) into a steady mean plus an unsteady fluctuation (5.21), and linearizing the
full shallow water equations around the steady mean stateq̄. The variableφ denotes the local

3Note that Section 5.2.2 give the dimensionless form of the linearized compressible Navier-Stokes equations. The
details of the non-dimensionalization of these equations can be found in Appendix A.3. The gas constantR in the
convective flux matrices (5.27) is the non-dimensional gas constant, given by (A.7). The dimensional gas constant has
the value 8.31 J

mol K for air.
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height of the fluid above the equilibrium depth, and the variablesu1, u2, andu3 are the components
of the fluid velocity vector [90].

Table 5.1.SymmetrizerH for several PDEs

Name 1D wave equation 3D linearized shallow water equations

Variables qT =
(

u̇, ∂u
∂x

)

qT =
(

u1, u2, u3, φ
)

PDEs q̇ = A1
∂q
∂x q̇′+A i

∂q′

∂xi
+Gq′ = 0

A1

(

0 a2

1 0

)









ū1 0 0 1
0 ū1 0 0
0 0 ū1 0
φ̄ 0 0 ū1









A2 −









ū2 0 0 0
0 ū2 0 1
0 0 ū2 0
0 φ̄ 0 ū2









A3 −









ū3 0 0 0
0 ū3 0 0
0 0 ū3 1
0 0 φ̄ ū3









H
(

1 0
0 a2

)









φ̄ 0 0 0
0 φ̄ 0 0
0 0 φ̄ 0
0 0 0 1









5.3 Nonlinear conservation laws

Attention is now turned to nonlinear conservation laws, namely the nonlinear compressible Navier-
Stokes equations of interest in the targeted captive-carryapplication. Three forms of the equations
are considered: the full compressible Navier-Stokes equations, theζ–form of the full compressible
Navier-Stokes equations, and the isentropic compressibleNavier-Stokes equations. The notation
‘ ,i ’ denotes differentiation with respect to theith spatial variable, i.e.,a,i ≡ ∂a

∂xi
, and ‘,t ’ denotes

differentiation with respect tot, i.e., a,t ≡ ∂a
∂ t , for a given variablea ≡ a(x, t). As before, the

Einstein convention (implied summation on repeated indices) has been employed.
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5.3.1 Full compressible Navier-Stokes equations

The full compressible Navier-Stokes equations in dimensionless primitive variable form are given
by the following system of PDEs [31]:

ρ,t +ρ, ju j +ρu j , j = 0,

ρui,t +ρui, ju j +
1

γM2
re f

(ρT),i− 1
Reτi j , j = 0,

ρT,t +ρu jT, j +(γ−1)u j , jρT−
( γ

PrRe

)(

κT, j
)

, j −
(

γ(γ−1)M2
re f

Re

)

ui, jτi j = 0,

(5.35)

wherei, j = 1,2,3 (in three spatial dimensions) and there is an implied summation on repeated
indices. The first equation in (5.35) is the continuity equation; the second three equations are the
momentum equations; the final equation is the energy equation. There are five unknowns: the
densityρ , the three velocity componentsu1, u2 andu3, and the temperatureT. ReandPr denote
the Reynolds and Prandtl numbers respectively;γ denotes the ratio of specific heats;Mre f is the
reference Mach number used in the non-dimensionalization4. The symbolτi j denotes the stress
tensor, given by:

τi j = µ
(

ui, j +u j ,i
)

+λuk,kδi j , (5.36)

for i, j,k = 1,2,3, whereδik denotes the Kronëcker delta, andµ andλ are the Lamé coefficients,
typically assumed to satisfy the so-called Stokes’ relation

λ +
2
3

µ = 0. (5.37)

The symbolκ denotes the thermal diffusivity, given by

κ =
µcp

Pr
, (5.38)

wherecp denotes the specific heat of the fluid at constant pressure. Inderiving (5.35), the ideal gas
law

p = ρRT =
ρT

γM2
re f

, (5.39)

wherep denotes the fluid pressure andR is the universal gas constant, has been employed. As-
suming constant viscosities and diffusivities (seeRemark 5.3.1below), the equations (5.35) have a
cubic nonlinearity.

Remark 5.3.1: In general, the viscosity coefficientsµ andλ , and the thermal diffusivityκ need
not be spatially constant. A commonly used expression forµ is the Sutherland viscosity law [89],
which is based on the kinetic theory of ideal gases and an idealized intermolecular-force potential.
This law states thatµ is related to the temperatureT as follows:

µ = µ(T) =
C1T3/2

T +C2
, (5.40)

4If ure f denotes the reference value of the velocities, andcre f is the reference speed of sound, the reference Mach
number is given byMre f = ure f/cre f . For a detailed discussion of the non-dimensionalization of the compressible
Navier-Stokes equations, the reader is referred to Appendix A.3.
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for some constantsC1,C2 ∈ R. The ROM code written as a part of this LDRD project, known as
Spirit (Section 5.4), allows the specification of a linearized version of Sutherland’s viscosity law
(5.40) for the linearized compressible Euler and Navier-Stokes equations, but not for the nonlinear
variants of these equations, for which a constant viscosityis assumed. The capability to use a
viscosity of the form (5.40) may be added to the code in the future. The primary difficulty of using
(5.40) comes from the fact that this expression contains a non-polynomial nonlinearity, meaning
the projection of this term would need to be handled using some kind of interpolation to keep
the ROM efficient, e.g., the discrete empirical interpolation method (DEIM) [29], “best points”
interpolation [74, 75], or gappy POD [33].

5.3.2 Full compressible Navier-Stokes equations:ζ–form

The equations (5.35) can also be written in the so-calledζ–form, whereζ = 1/ρ denotes the fluid’s
specific volume:

ζ,t +ζ, ju j −ζu j , j = 0,

ui,t +ui, ju j +ζ p,i− 1
Reζ τi j , j = 0,

p,t +u j p, j + γu j , j p−
( γ

PrRe

)(

κ(pζ ), j
)

, j −
(

γ−1
Re

)

ui, jτi j = 0,
(5.41)

for i, j = 1,2,3 (in three spatial dimensions). The first equation in (5.41)is the continuity equation,
followed by the three momentum equations, and the energy equation. The symbolp denotes the
fluid pressure. The stress tensorτi j is given by (5.36), and the symbolsPr, Re, µ, λ , κ andγ are
the same as before.

The upshot of theζ–form of the compressible Navier-Stokes equations (5.41) over the standard
form (5.35) is (5.41) has only a quadratic nonlinearity, whereas (5.35) has a cubic nonlinearity.
Hence, both the offline and online stages of a projection-based model reduction algorithm for
(5.41) will be cheaper to evaluate than the offline and onlinestages of a projection-based model
reduction algorithm for (5.35).

5.3.3 Isentropic compressible Navier-Stokes equations

The last version of the compressible Navier-Stokes equations considered is an approximate form
of (5.35) and (5.41), namely the isentropic version of theseequations. The isentropic compressible
Navier-Stokes equations are valid for cold flows (flows for which Twall = T∞ and the temperature
gradients are small) at a moderate Mach number. The isentropic assumption is consistent with the
neglect of the viscous dissipation and heat conduction terms in the energy equation, and constant
viscosities in the momentum equations. Unlike the full equations (5.35) and (5.41), the fluid
vector consists of only four unknowns in 3D: the enthalpyh, and the three components of the
velocity vector,ui for i = 1,2,3. In dimensionless form5, the isentropic compressible Navier-

5The dimensional version of (5.42) can be found in [81]. The reference values used in the non-dimensionalization
are given in Appendix A.3.
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Stokes equations are as follows:

h,t +uih,i +(γ−1)hui,i = 0,

u j ,t +uiu j ,i +h j − 1
Reu j ,ii = 0,

(5.42)

for j = 1,2,3. Like theζ–form of the full compressible Navier-Stokes equations (5.41) but un-
like the original form (5.35), the isentropic Navier-Stokes equations (5.42) have only quadratic
nonlinearities. The enthalpyh is related to the speed of sound according to the following relation:

c2 = (γ−1)h. (5.43)

Sincec2 = γ p
ρ , the following equation relatesh to p andρ :

h =
γ p

ρ(γ−1)
. (5.44)

5.3.4 Energy inner products for the nonlinear compressibleNavier-Stokes
equations

Some energy inner products for the various forms of the nonlinear compressible Navier-Stokes
equations given above are now derived. An essential property of the solution to these fluid equa-
tions is that the total system energy,

ET =

∫

Ω

(

ρe+
1
2

ρuiui

)

dΩ, (5.45)

is, in the absence of external sources, non-increasing in time6, i.e.,

dET

dt
≤ 0. (5.46)

The first term in (5.45) represents the internal energy, and the second term represents the kinetic
energy, withe denoting the internal energy per unit mass of the fluid. The quantity e is related to
the pressure, density and temperature (assuming as before the ideal gas law (5.39)) via the relation:

p = (γ−1)ρe, T = γ(γ−1)M2
re fe. (5.47)

SinceET > 0 anddET
dt ≤ 0, the energy (5.45) satisfies the definition of a Lyapunov function for its

corresponding fluid system (Theorem 3.2.2 in Section 3.2). By the discussion in Section 3.2 as well
as [81], if an inner product that induces the energy (5.45) isused to build the ROM, then the stability
of an equilibrium point of the system at the origin should be preserved by the Galerkin projection
step of the model reduction. This is a necessary, although not always sufficient, condition for
time-stability of a nonlinear ROM.

6Or, equivalently, the entropy is non-decreasing in time, per the second law of thermodynamics, a.k.a. the Clausius-
Duhem inequality [55].
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It is noted that the use of an energy inner product to do the Galerkin projection step of the model
reduction does not guarantee that the stability of an equilibrium point other than the origin is
preserved, nor does it guarantee that the stability of limitcycles is preserved [81]. Moreover, an
equilibrium point of a dynamical system is not necessarily an attractor of the system. Hence, a
ROM constructed in an energy inner product may not preserve an attractor for the compressible
Navier-Stokes equations. It is also noted that, in some situations, an energy-based inner product
may not be appropriate, e.g., for jet noise problems in whichthe acoustic waves of interest contain
a very small fraction of the energy [81].

Isentropic compressible Navier-Stokes equations

In [81], a physically meaningful energy inner product for the isentropic compressible Navier-
Stokes equations (5.42) is introduced. This inner product is reviewed here, as it motivates the
definition of an energy inner product for the full compressible Navier-Stokes equations in the prim-
itive variables (5.35). The inner product requires first a transformation of the equations (5.42) into
a new set of variables, and is based on either the stagnation enthalpy or the stagnation energy. The
transformed variables arec, the speed of sound, and the three velocity componentsui for i = 1,2,3.
In non-dimensional form, the nonlinear isentropic compressible Navier-Stokes equations in these
variables are:

c,t +uic,i +
γ−1

2 cui,i = 0,

u j ,t +uiu j ,i +
2

γ−1cc, j − 1
Reu j ,ii = 0,

(5.48)

again for j = 1,2,3. In [81], Rowleyet al. define the following inner product for (5.48):

(

q(1),q(2)
)

SE,α
≡
∫

Ω

(

u(1)
i u(2)

i +
2α

γ−1
c(1)c(2)

)

dΩ, (5.49)

whereq(1) ≡
(

c(1), u(1)
1 , u(1)

2 , u(1)
3

)T
and similarly forq(2). Whenα = 1 in (5.49), the norm

induced by (5.49) represents the stagnation enthalpy; whenα = 1/γ, the norm induced by (5.49)
represents the stagnation energy7.

Note that the nonlinearities in the transformed equations (5.48) are only quadratic. Let

φφφk≡









φc
k

φu1
k

φu2
k

φu3
k









, (5.51)

7Note that, for the isentropic compressible Navier-Stokes equations, the stagnation energy

Es =
∫

Ω

(

e+
1
2

uiui

)

dΩ, (5.50)

and total energy (5.50) are equivalent (and similarly for stagnation enthalpy and total enthalpy). The second term in
(5.50) is commonly referred to as the specific energy.
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denote thekth POD mode. Projecting (5.48) onto this mode in the inner product (5.49) and inte-
grating the viscous term by parts8 gives:

∫

Ω

(

u j,t +uiu j,i +
2

γ−1
cc, j

)

φuj

k dΩ+

∫

Ω

1
Re

u j,iφ
uj

k,i dΩ+

∫

Ω

2α
γ−1

(

c,t +uic,i +
γ−1

2
cui,i

)

φc
k dΩ = 0,

(5.52)
for k = 1, ...,M. Upon discretization, (5.52) gives rise to a nonlinear matrix problem of the form:

ẋM,i +
M

∑
k=1

AikxM,k +
M

∑
k=1

M

∑
q=1

A(3)
ikqxM,kxM,q = 0, (5.53)

for i = 1, ...,M, assuming the POD modes have been normalized with respect tothe inner product
(5.49). The cost of applying a time-integration scheme to (5.53) (the online stage of the model
reduction) isO(M3).

Full compressible Navier-Stokes equations

As mentioned at the beginning of this chapter, a ROM for (5.35) constructed in theL2 inner product
is not guaranteed to give rise to an energy-stable formulation. To remedy this problem, an inner
product whose norm is the total energy of the fluid system (5.45) is formulated here. Before
defining the said inner product, a transformation of the equations (5.35) is required. Leta be a new
variable, given by

a2≡ ρ. (5.54)

Now, define the following transformed fluid vector:

q≡













a
b1

b2
b3

d













=













a
au1

au2
au3

ae













∈ R
5. (5.55)

In the transformed variables, the (non-dimensional) compressible Navier-Stokes equations (5.35)
are as follows:

2a∂a
∂ t + ∂ (abi )

∂xi
= 0,

∂ (abi)
∂ t +

∂ (bj bi)
∂xj

+(γ−1)∂ (ad)
∂xi
− 1

Re
∂τi j

∂xj
= 0,

∂ (ad)
∂ t +

∂ (bjd)
∂xj

+(γ−1)d
a

(

a∂bj

∂xj
−b j

∂a
∂xj

)

− γ
PrRe

∂
∂xj

(

κ
a2

(

a ∂d
∂xj
−d ∂a

∂xj

))

− 1
Re

1
a2 τi j

(

a∂bi
∂xj
−bi

∂a
∂xj

)

= 0,

(5.56)
where

τi j =
µ
a2

[

a
∂bi

∂x j
−bi

∂a
∂x j

+a
∂b j

∂xi
−b j

∂a
∂xi

]

+δi j
λ
a2

(

a
∂bk

∂xk
−bk

∂a
∂xk

)

, (5.57)

8As before, the boundary condition terms are omitted from theROM equations, which in general is justified if the
POD modes satisfy the FOM boundary conditions; see [57] and Appendix A.5.
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for i, j = 1,2,3. (5.56) can be simplified as follows:

2a∂a
∂ t +a∂bi

∂xi
+bi

∂a
∂xi

= 0,

a∂bi
∂ t + 1

2bi
∂bj

∂xj
− 1

2abib j
∂a
∂xj

+b j
∂bi
∂xj

+(γ−1)
[

a ∂d
∂xi

+d ∂a
∂xi

]

− 1
Re

∂τi j

∂xj
= 0,

a∂d
∂ t +b j

∂d
∂xj
− 1

a

(

γ− 1
2

)

dbj
∂a
∂xj

+
(

γ− 1
2

)

d∂bj

∂xj
+ γ

PrRe
∂

∂xj

[

κ
a2

(

a ∂d
∂xj
−d ∂a

∂xj

)]

− 1
Re

1
a2 τi j

(

a∂bi
∂xj
−bi

∂a
∂xj

)

= 0,

(5.58)

for i, j = 1,2,3.

Consider the following inner product9:
(

q(1),q(2)
)

E
≡
∫

Ω

1
2

(

a(1)d(2) +a(2)d(1) +b(1)
i b(2)

i

)

dΩ. (5.59)

The norm induced by the inner product (5.59) is:

||q||2E ≡ (q,q)E
=
∫

Ω
(

ad+ 1
2bibi

)

dΩ
=
∫

Ω
(

a2e+ 1
2a2uiui

)

dΩ
=
∫

Ω
(

ρe+ 1
2ρuiui

)

dΩ
= ET .

(5.60)

That is, the norm induced by the inner product (5.59) is the total energy of the fluid system. If the
Galerkin projection step of the model reduction procedure is done in the inner product (5.59), the
resulting ROM should preserve the stability of an equilibrium point of the system at the origin.

The projection of the equations (5.58) onto the reduced basis modes in the total energy inner
product (5.59) is now derived. Let

φφφk =















φa
k

φb1
k

φb2
k

φb3
k

φd
k















, (5.61)

denote thekth POD mode.

Consider first the inviscid variant of (5.58) (µ = λ = κ = 0). The first step is to convert the non-
polynomial nonlinearities in (5.58) into polynomial ones.To do this, the momentum and energy
equations are each multiplied bya. Doing so, and projecting (5.58) onto the mode (5.61) in the
total energy inner product (5.59) gives:

∫

Ω

(

2a∂a
∂ t +a∂bi

∂xi
+bi

∂a
∂xi

)

φd
k dΩ

+
∫
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∂bj

∂xj
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2bib j
∂a
∂xj

+b ja
∂bi
∂xj

+(γ−1)a
[

a∂d
∂xi

+d ∂a
∂xi

])

φbj

k dΩ
∫

Ω

(

a2 ∂d
∂ t +abj

∂d
∂xj
−
(

γ− 1
2

)

dbj
∂a
∂xj

+
(

γ− 1
2

)

da∂bj

∂xj

)

φa
k dΩ = 0.

(5.62)

9It is shown in Appendix A.4 that (5.59) is a valid inner product.
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When discretized, (5.62) will yield a nonlinear system of the form:

M

∑
k=1

M

∑
q=1

M(3)
ikqxM,qẋM,k +

M

∑
k=1

M

∑
q=1

A(3)
ikqxM,kxM,q +

M

∑
k=1

M

∑
q=1

M

∑
r=1

A(4)
ikqrxM,kxM,qxM,r = 0, (5.63)

for i = 1, ...,M. The entries of the tensorsM(3)
ikq , A(3)

ikq andA(4)
ikqr appearing in (5.63), referred to

as the third order mass tensor, the third order ROM coefficient tensor, and the fourth order ROM
coefficient tensor, respectively, can be deduced from (5.62), and are not given here for the sake of
brevity. All mass and ROM coefficient tensors in (5.63) can bepre-computed in the offline stage of
the model reduction, and stored for use during the online time-integration stage of the ROM. Note
that, in the online stage, it is necessary to evaluate tensor/vector products involving these mass and
ROM coefficient tensors, which requiresO(M4) operations (Section 4.4). Ideas for reducing this
computational cost are discussed at the end of this subsection.

For the more general viscous case, to remove the non-polynomial nonlinearities in (5.58), the
momentum equation needs to be multiplied bya3, and the energy equation bya4. Doing so, and
projecting these equations onto (5.61) in the inner product(5.59), following an integration by parts
on the viscous terms10, gives:

∫

Ω

(

2a∂a
∂ t +a∂bi

∂xi
+bi

∂a
∂xi

)

φd
k dΩ
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dΩ−
∫

Ω
1
Rea

2τi j

(

a∂bi
∂x j
−bi

∂a
∂x j

)

φa
k dΩ = 0.

(5.64)

When discretized, (5.64) will yield a nonlinear system of the form:

∑M
k=1 ∑M

q=1M(3)
ikqxM,qẋM,k +∑M

k=1 ∑M
q=1 ∑M

r=1∑M
s=1 ∑M

t=1M(6)
ikqrstxM,qxM,rxM,sxM,t ẋM,k

+∑M
k=1 ∑M

q=1 ∑M
r=1∑M

s=1 ∑M
t=1 ∑M

p=1M(7)
ikqrst pxM,qxM,rxM,sxM,txM,pẋM,k

+∑M
k=1 ∑M

q=1A(3)
ikqxM,kxM,q +∑M

k=1 ∑M
q=1 ∑M

r=1A(4)
ikqrxM,kxM,qxM,r

+∑M
k=1 ∑M

q=1 ∑M
r=1∑M

s=1A(5)
ikqrsxM,kxM,qxM,rxM,s

+∑M
k=1 ∑M

q=1 ∑M
r=1∑M

s=1 ∑M
t=1A(6)

ikqrstxM,kxM,qxM,rxM,sxM,t

+∑M
k=1 ∑M

q=1 ∑M
r=1∑M

s=1 ∑M
t=1 ∑M

p=1A(7)
ikqrst pxM,kxM,qxM,rxM,sxM,txM,p = 0,

(5.65)

for i = 1, ...,M. As before, the mass and ROM coefficient tensorsA(k) andM (k) appearing in (5.65)
are not given here explicitly for the sake of brevity, but canbe inferred by comparing (5.65) with
(5.64). The reader can observe that (5.65) has up to a 7th order mass and ROM coefficient tensor.
Like for the inviscid case (5.63), all mass and ROM coefficient tensors appearing in (5.65) can be
pre-computed during the offline stage of the model reduction.

10Neglecting the resulting boundary integrals is justified ifthe POD modes satisfy the boundary conditions of the
governing PDEs; see Appendix A.5 and [57].
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Per the discussion in Section 4.4, the cost of evaluating thetensor/vector products arising when
(5.65) is integrated forward in time isO(M7). This cost is substantial even for smallM, e.g.,
M = O(10). To restore efficiency of the ROM, the nonlinear terms in (5.64) can be interpolated
using well-established methods such as DEIM [29], “best points” interpolation [74, 75], or gappy
POD [33]. As the objective here is to evaluate the accuracy ofROMs constructed in the total
energy inner product (proposed here for the first time), the nonlinear terms in (5.65) are handled
directly, that is, without interpolation. The addition of interpolation capabilities to theSpirit code
(Section 5.4) for the purpose of improving the efficiency of the nonlinear ROMs implemented there
may be the subject of future work.

Note that no energy inner product is proposed for theζ–form of the compressible Navier-Stokes
equations (5.41). Deriving such an inner product seemsa priori a promising path, as theζ–
form of the equations have only quadratic nonlinearities, instead of cubic nonlinearities (5.35).
Unfortunately, the equations are not amenable to such a formulation if a projected system having
only polynomial nonlinearities is desired.

5.4 Implementation/Spirit code

A parallel C++ code that reads in the snapshot data written bya high-fidelity code, assembles the
necessary finite element representation of the snapshots and computes the numerical quadrature
necessary for the evaluation of the inner products has been written by the authors. The code,
known asSpirit, is kept in agit repository on the Sandia Restricted Network (SRN) Common
Engineering Environment (CEE) space, and can be cloned fromthis repository using the following
command:

git clone user@ceerwsXXXXX:/projects/aerosciences/repo/git/spirit

To ensure software quality, the code is pulled from its repository, compiled and tested every night
using acronjob on the PI’s Linux workstation.

The stability analysis in this chapter has assumed that the integrals resulting from the projection of
the governing equations onto the reduced basis modes are evaluated exactly in continuous form.
This continuous result can be translated to the discrete setting through the use of high-precision
numerical quadrature as follows. First, the snapshots and the POD basis modes are cast as a
collection of continuous finite elements. It is then possible to construct a numerical quadrature
operator that computes exactly (with respect to the finite element representation) all continuous
inner products arising from the continuous Galerkin projection of the equations onto the POD
modes.

For concreteness, the numerical quadrature is illustratedhere on the simpler case of linearized
equations, e.g., the linearized compressible Euler or Navier-Stokes equations. By the discussion in
Section 5.2, it is necessary to compute numerically integrals of the form:

(

q(1),q(2)
)

(H,Ω)
=

∫

Ω
q(1)THq(2)dΩ, (5.66)
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whereH is the symmetrizer for the governing system. Suppose, without loss of generality, that the
finite element shape functions are chosen to be bilinear. Thediscrete representations of the vectors
q(1) andq(2) are denoted byqh(1) andqh(2), respectively. The length of these vectors is equal to the
number of mesh nodesN times the dimension of the vector,r. Let Hh

e be ther× r element inner
product matrix, taken to be piecewise constant over each element. Then, the formula for numerical
integration of (5.66) can be written as

(

q(1),q(2)
)

(H,Ω)
= qh(1)TWqh(2), (5.67)

whereW is a sparse block matrix comprised ofN×N blocks of dimensionr× r. The(k, l)th block
of this matrix given bywklI , where

wkl =
nel

kl

∑
e=1

Hh
e

4

∑
j=1

Nke(x je)Nle(x je)ω je. (5.68)

Here, the outer sum is over the elements connected to thek− l nodal “edge”; theω je are the
integration weights and thex je are the integration points.

All calculations are performed in parallel using distributed matrix and vector data structures and
parallel eigensolvers from the Trilinos project [49]. The parallelism11 in Spirit allows for large
data sets and a relatively large number of POD modes. Thelibmesh finite element library [63]
is used to compute element quadratures. The online time-integration of the ROM system (4.18)
(with the mass tensors and ROM coefficient tensors computed within Spirit and written to disk)
is performed using a fourth-order Runge-Kutta scheme in MATLAB.

TheSpirit code contains several linear as well as nonlinear compressible fluid PDE sets, which
can be projected onto the POD reduced basis modes in several inner products. The physics and
inner products available inSpirit at the time this report was written are summarized in Table 5.2.
For the linearized equations, the base flow to linearize about, q̄(x), can be set either to a spatially-
constant value (for uniform base flow), or read in from file (for non-uniform base flow). Note that
the linearized compressible Navier-Stokes equations inSpirit include the viscous work terms
(A.2) (Appendix A.2). The base flow is not needed in the case ofnonlinear equations, as the ROM
(and hence the POD basis) is constructed for the full state vectorq(x, t) in this case. The option to
run dimensionally as well as non-dimensionally is available. In general, the latter is preferred, as
the resulting systems are often better scaled. Additional capabilities available inSpirit include:

• The capability to specify various boundary conditions (e.g., no-penetration boundary condi-
tion, sponge far-field boundary conditions; Appendix A.5) in the ROM.

• The capability to add source terms (e.g., body force actuation; Appendix A.11) to the ROM
equations.

It is straightforward to add new physics and boundary conditions to Spirit with an arbitrary
number of dofs per node.

11Note that, at the present time, the input/output (I/O) inSpirit is serial: the snapshots and mesh data are read in
on processor 0, then distributed to the other processors (and similarly for the output). All other operations, e.g., the
POD basis calculation and Galerkin projection, are fully parallel.
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Table 5.2.PDEs/inner products available inSpirit

PDEs regimes # dofs/node unknowns inner product

linearized
compressible

Euler
inviscid 5 u′1,u

′
2,u
′
3,ζ ′, p′

L2

symmetry

linearized
compressible

Navier-Stokes∗

viscous
inviscid

5 u′1,u
′
2,u
′
3,T
′,ρ ′ L2

symmetry

isentropic
compressible
Navier-Stokes

viscous
inviscid

4 u1,u2,u3,h L2

isentropic
compressible
Navier-Stokes

viscous
inviscid

4 u1,u2,u3,c
stagnation energy

stagnation enthalpy

ζ–form
compressible
Navier-Stokes

viscous
inviscid

5 u1,u2,u3,ζ , p L2

compressible
Navier-Stokes

viscous
inviscid

5 u1,u2,u3,T,ρ L2

compressible
Navier-Stokes

viscous
inviscid

5 a =
√ρ , {bi}3i=1, d = ae total energy

* The linearized compressible Navier-Stokes equations inSpirit include the viscous work terms (A.2) (Appendix A.2).

One reasonSpirit is designed as a stand-alone code is so that it can be synchronized withany
high-fidelity CFD code that can write out a mesh and snapshot data stored at the nodes of this
mesh. At the time of publication of this report,Spirit has been run with two high-fidelity flow
solvers:AERO-F andSIGMA CFD. TheAERO-F simulation code is an arbitrary Lagrangian-Eulerian
finite volume code that can be used for high-fidelity aeroelastic analysis [69, 34].SIGMA CFD is a
Sandia in-house high-fidelity finite volume flow solver. Thiscode is derived fromLESLIE3D, an
LES flow solver originally developed at the Computational Combustion Laboratory at the Georgia
Institute of Technology, and has direct numerical simulation (DNS) as well as LES capabilities.
For a detailed description of the schemes and models implemented within LESLIE3D, the reader
is referred to [38, 37].

More information about theSpirit code can be found in [35, 19].

5.5 Numerical results

The linear as well as nonlinear model reduction methods detailed in the previous sections are now
tested on three benchmarks, summarized in Table 5.3.
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Table 5.3.Spirit test cases

Name FOM code FOM physics Dynamics
2D inviscid pulse AERO-F Linearized compressible Euler linear
2D viscous pulse SIGMA CFD Nonlinear compressible Navier-Stokes linear

Viscous laminar cavity SIGMA CFD Nonlinear compressible Navier-Stokesnonlinear

The first two benchmarks, the 2D inviscid and 2D viscous pulsetest cases (Section 5.5.1 and
5.5.2), have effectively linear dynamics and are considered for code verification purposes. The
third benchmark (Section 5.5.3), the viscous laminar cavity test case, is a problem whose solution
exhibits inherently nonlinear dynamics, namely vortices that convect. The domain of interest for
this problem is an openT–shaped cavity, precisely the geometry relevant for the targeted captive-
carry application (Figure 1.1(c)). The problems are run in parallel on either the Red Sky cluster or
a CEE Remove Graphics Workstation, both at Sandia.

In calculating the POD basis for the vector-valued fluid fieldq (or fluid fluctuationq′, in the
linear case), there are two approaches. The first approach isto calculate a separate scalar basis
for each of the variables comprisingq (or q′). The second approach is to build a vector-valued
basis{φφφk ∈Rn}Mk=1for q (or q′), wheren is the number of dofs (PDEs) per node (in generaln = 5
in 3D, except for the case of isentropic equations, wheren = 4). The latter method involving the
vector-valued basis is taken here. Previous work [81, 56] suggests that the scalar-valued method
appears to offer no advantages over the vector-valued method and requires higher order models.

Among the results shown for the three test cases are time histories of theith ROM modal amplitude
compared to the projection of the FOM CFD simulation onto theith POD mode. Mathematically,
the figures shown compare as a function of timet:

xM,i(t) vs. (qFOM,φφφ i) , (5.69)

for 1≤ i≤M, whereqFOM is the high-fidelity CFD solution from which the ROMs are constructed.

Also reported are the relative errors in the ROM solutions with respect to the snapshots, i.e.,

Erel,q =

√

√

√

√

∑Kmax
i=1 ||qFOM(ti)−qM(ti)||2

∑Kmax
i=1 ||qFOM(ti)||2

, (5.70)

whereqM(t) = ∑M
k=1xM,kφφφ k(t) andqFOM(t) denote the ROM and FOM solutions (respectively) at

time t, andKmax denotes the integer such thatTmax= Kmax∆tsnap, whereTmax is the maximum time
until which the ROM is run, and∆tsnap is the time step between snapshots. The norm|| · ||2 in
(5.70) is the discreteL2 norm.

Note that, for all three test cases, emphasis is placed on reproducing a given CFD solution for
a single set of flow conditions in a stable and accurate fashion. This is viewed as an essential
prerequisite for applying the method to more complex situations, such as building ROMs valid
across a parameter space or range of flow conditions, and for using the ROMs to do analysis (e.g.,
flow control, uncertainty quantification).
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Note also that the ROMs tested do not include an implementation of the boundary conditions, al-
though some boundary conditions are available inSpirit, as discussed earlier. For the viscous
problems, the POD modes satisfy strongly the no-slip and adiabatic wall boundary conditions at
the cavity walls, meaning the ROMs inherit automatically these boundary conditions from their un-
derlying FOMs. It is conjectured that the inclusion of a far-field non-reflecting boundary condition
in the ROMs may improve the models’ stability and accuracy (Appendix A.5).

5.5.1 2D inviscid pulse in uniform base flow

The first benchmark is a linear inviscid problem. The test case involves the propagation and reflec-
tion of a cylindrical acoustic pulse from two parallel wallsin a uniform base flow. The governing
equations are the linearized compressible Euler equations(Section 5.2.1). The base flow velocity
is taken to be uniform in thex1-direction with free-stream Mach numberM∞ ≡ ū1

c̄ = 0.25. The
initial condition at timet = 0 is

p′

ρ̄ c̄2 = 0.1M2
∞ exp(−((x1−10)2+(x2 +1)2)),

ζ ′

ζ̄
=− p′

ρ̄ c̄2 , u′1 = u′2 = u′3 = 0. (5.71)

The exact solution for this IBVP can be found in [91].

TheAERO-F node-centered finite volume code [34] is used to generate thesnapshots from which the
ROM POD bases are constructed. This high-fidelity solver is run in the linearized compressible
Euler regime, as the problem is inviscid and the dynamics arelinear. The numerical solution is
performed on a 3D rectangular prism domain, with extent 0≤ x1 ≤ 20,−5≤ x2 ≤ 5, 0≤ x3 ≤ 1,
discretized by finite volumes that are interconnected to form a mesh of 1,052,551 unstructured
tetrahedral elements (with a total of 197,226 nodes). Slip wall boundary conditions are applied on
the constantx2 andx3 boundaries in the high-fidelity code. The high-fidelity simulation is run for
a non-dimensional time ofTmax= 6.4, using 624 time steps. Snapshots are saved every four time
steps beginning at timet = 0.57 and ending att = Tmax, to yield a total ofKmax= 157 snapshots.
These snapshots are used to generate 12 mode POD bases in the various inner products evaluated.
It is found that the 12 mode bases capture approximately 99.4% of the snapshot energy (4.6). The
FOM as well as the ROMs are run non-dimensionally.

Eight of the ten ROM approaches12 summarized in Table 5.2 are evaluated. As this is an inviscid
problem, the viscosity coefficients in the compressible Navier-Stokes equations are all set to zero:
µ = λ = κ = 0. Since the high-fidelity code solves thelinearizedequations and the dynamics
are linear, it is expected that the linearized ROMs will be able to accurately capture the solution
to the problem. Note that, because the base flow is uniform, the G matrix in (5.22) vanishes,
and theA i andK i j matrices appearing in these equations are spatially constant. It follows from
Corollary 5.2.1 that the linearized symmetry ROMs should betime-stable and stable in the sense of
Lyapunov. The nonlinear ROMs, which should also be able to reproduce reasonably the solution
dynamics, are tested as a verification of the implementationof the nonlinear physics inSpirit.

12The ROMs based on the linearized compressible Navier-Stokes equations are not considered; considered instead
are ROMs based on the linearized compressible Euler equations, as the problem of interest is inviscid.
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First, the stability of the two linearized inviscid ROMs13 in Table 5.2 is evaluated using Theorem
3.2.3, that is, by checking the sign of the real parts of the eigenvalues of the ROM system matrices
AM. The maximum real parts of the eigenvalues ofAM for theM = 12 linearized POD/Galerkin
ROMs are given in Table 5.4. The reader can observe that theL2 ROM is mildly unstable based on
the eigenvalue criterion for stability. The symmetry ROM, in contrast, is stable.

Table 5.4. Maximum real part of eigenvalues ofAM for M = 12
mode linearized ROMs constructed in theL2 and symmetry inner
products (2D inviscid pulse problem)

Physics Inner product max{Re[λi(AM)]}

Linearized compressible Euler
L2 0.03

symmetry 0.0

Next, the time history of the modal amplitudesxM,i is compared to the projection of the POD modes
onto the snapshots(qCFD,φφφ i) for i = 1,2 (5.69). Figure 5.1 shows these quantities as a function
of time for the nonlinear compressible Navier-Stokes ROM constructed in the total energy inner
product. The reader can observe that the agreement is excellent, which indicates that the ROM can
reproduce well the snapshots from which it was constructed.Similar figures were produced using
the remaining seven ROMs evaluated, and are not shown here for the sake of brevity.
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Figure 5.1. Time history of modal amplitudes forM = 12 mode
nonlinear ROM constructed in the total energy inner product(2D
inviscid pulse problem)

Figures 5.2 and 5.3 compare the high-fidelity pressure field (a) with the field reconstructed from
the M = 12 mode compressible linearized Euler symmetry ROM (b) at the time of the 78th and
157th (final) snapshot respectively. There is a good qualitative agreement between the high-fidelity
solution and the ROM solution.

Next, a quantitative evaluation of the ROMs is performed: the relative errors in the eight ROMs
tested are calculated using the formula (5.70) as a functionof the number of POD modesM (Table

13The stability of the nonlinear ROMs is not evaluated, as Theorem 3.2.3 is limited to linear systems.
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(a) FOM (b) 12 mode linearized compressible Euler
symmetry ROM

Figure 5.2.Pressure fluctuation contours at time of the 78th snap-
shot (2D inviscid pulse problem)

5.5). The size of the ROM basis is varied from six to eighteen.The errors in Table 5.5 reveal
that all eight ROMs deliver accurate solutions, with the nonlinear isentropicL2 ROM delivering in
general the most accurate solution. Convergence with refinement in the basis sizeM is observed.

Table 5.5.ROM relative errorsErel,q (2D inviscid pulse problem)

Physics
Inner

product
M = 6 M = 12 M = 18

Linearized
compr Euler

L2 1.38×10−4 1.65×10−5 1.64×10−5

symm 1.34×10−4 1.66×10−5 1.62×10−5

Nonlinear compr
isentropic N-S

L2 5.72×10−5 7.32×10−6 7.16×10−6

stag ene 4.82×10−4 1.26×10−5 1.23×10−5

stag enth 2.81×10−4 1.27×10−5 1.23×10−5

ζ–form nonlinear
compr N-S

L2 1.14×10−4 1.68×10−5 1.66×10−5

Nonlinear
compr N-S

L2 1.08×10−4 2.25×10−5 2.19×10−5

tot ene 1.02×10−4 1.18×10−5 1.14×10−5

The errors in Table 5.5 give an idea of how accurate are the ROMsolutions. Also of interest is how
well the ROMs can represent the total energy of the fluid. Figures 5.4 and 5.6 show as a function of
time the total energy of the fluid calculated using the linearized and nonlinear ROMs (respectively),
compared with the total energy of the fluid calculated using the FOM (5.45). Similarly, Figure 5.5
shows the stagnation energy (5.50) of the fluid calculated using the isentropic nonlinear ROMs
compared with the stagnation energy of the fluid calculated using the FOM14. The reader can
observe that the ROM total/stagnation energy converges to the FOM total/stagnation energy as the
basis sizeM is increased. ROMs based on the nonlinear compressible Navier-Stokes equations15

14Recall that the total and stagnation energy is equivalent for the isentropic compressible Navier-Stokes equations.
15The total energy for the ROMs based on theζ–form of the nonlinear compressible Navier-Stokes equations is not
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(a) FOM (b) 12 mode linearized compressible Euler sym-
metry ROM

Figure 5.3. Pressure fluctuation contours at time of the 157th

snapshot (2D inviscid pulse problem)

track better the total energy of the snapshots for smallM (Figure 5.6).
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Having studied the accuracy of the ROMs, attention is now turned to efficiency. Table 5.6 gives
the total CPU times (in seconds) of the offline (quadrature weight calculation and Galerkin projec-
tion) and online (time-integration using a fourth order Runge-Kutta method with a time increment
of ∆t = ∆tsnap/400) stage of the model reduction for the various ROMs considered. The times
reported under the “offline stage” header are fromSpirit and are averages over a total of 16
processors of a CEE Remote Graphics Workstation. The times reported under the “online stage”
header are calculated in MATLAB using thetic/toc command on a CEE Remote Graphics Work-
station. The ROM time-integration is performed in serial. Not reported in Table 5.6 is the time
required to calculate the POD bases. It takes approximately100 seconds (on 16 processors of a

shown, as the result is virtually identical to theL2 ROM for the nonlinear compressible Navier-Stokes equations in the
primitive variables.
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CEE Remote Graphics Workstation) to calculate a POD basis ofsizeM = 18 from Kmax = 157
snapshots.

The CPU times reported in Table 5.6 reveal that, although thenonlinear ROMs are accurate, their
offline as well as online efficiency can be improved, especially the efficiency of the nonlinear com-
pressible Navier-Stokes ROMs constructed in the total energy inner product. The focus here is
ROM accuracy and implementation verification; efficiency isto be addressed in future work. As
discussed in Section 4.4, efficiency of the nonlinear ROMs can be recovered by using interpola-
tion to handle the nonlinear terms appearing in these equations, e.g., DEIM [29], “best points”
interpolation [74, 75], or gappy POD [33] (Section 4.4).
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Table 5.6.CPU times (in seconds) for offline Galerkin projection
and online time-integration stages of the model reduction for the
ROMs considered (2D inviscid pulse problem)

POD basis size ROM
Offline stage:

Galerkin projection
(Spirit, 16 procs)

Online stage:
time-integration

(MATLAB, 1 proc)

M = 6

Linear
compr N-S

2.14×101 3.99

Nonlinear isentropic
compr N-S

5.87×101 2.35×101

ζ–form
nonlinear compr N-S

1.03×102 1.84×101

NonlinearL2

compr N-S
9.45×102 5.30×101

Nonlinear total energy
compr N-S

2.80×103 7.18×101

M = 12

Linear
compr N-S

5.82×101 3.27

Nonlinear isentropic
compr N-S

4.67×102 2.78×101

ζ–form
nonlinear compr N-S

7.63×102 2.37×101

NonlinearL2

compr N-S
1.40×104 9.06×101

Nonlinear total energy
compr N-S

4.41×104 1.25×102

M = 18

Linear
compr N-S

1.20×102 4.74

Nonlinear isentropic
compr N-S

1.28×103 4.49×101

ζ–form
nonlinear compr N-S

3.56×103 3.32×101

NonlinearL2

compr N-S
6.64×104 1.81×102

Nonlinear total energy
compr N-S

2.06×105 2.79×102
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5.5.2 2D viscous pulse in uniform base flow

The second test case is that of a 2D viscous acoustic pressurepulse in the following 2D prismatic
domain:Ω = (−1,1)2∈R2. The base flow is uniform, with the following values: ¯p= 101,325 Pa,
T̄ = 300 K, ρ̄ = p̄

RT = 1.17 kg/m3, ū1 = ū2 = 0.0 m/s, and ¯c = 348.0 m/s, where ¯c≡
√

γRT̄ is
the mean speed of sound. The problem is initialized with a pressure pulse in the middle of the
domain:

p′(x;0) = 141.9e−10(x2+y2),

ρ ′(x;0) =
p′(x;0)

RT̄ ,

T ′(x;0) = 0,
u′1(x;0) = u′2(x;0) = 0.

(5.72)

In terms of the mean values, the amplitude of the initial pressure pulse (5.72) is 0.001ρ̄c̄2. A
constant viscosityµ is prescribed such that the Reynolds number for the problem is Re= 28, and
a constant thermal diffusivityκ is prescribed such that the Prandtl number isPr = 0.72. The Lamé
coefficientλ is given by the Stokes’ hypothesis (5.37).

The 2D viscous pulse problem differs from the 2D inviscid pulse problem considered earlier (Sec-
tion 5.5.1) in two key ways: (1) it is viscous, and (2) the high-fidelity simulation is obtained using
a nonlinear code, namelySIGMA CFD, in DNS mode.

As bothSIGMA CFD andSpirit are 3D codes, a 2D mesh of the domainΩ is converted to a 3D
mesh by extruding the 2D mesh in thex3–direction by one element. The resulting 3D computa-
tional grid for this test case is composed of 3362 nodes, castinto 9600 tetrahedral finite elements
within Spirit. To ensure the solution has no dynamics in thex3–direction, the following values of
thex3–velocity component are specified: ¯u3 = 0, u′3(x;0) = 0. A no-slip and adiabatic wall bound-
ary condition is imposed on the four sides of the domain in thex1– andx2–plane and symmetry
boundary conditions are imposed for thex3 = constant boundary in the high-fidelity code.

The high-fidelity simulation from which the ROM is generatedis performed until timeTmax= 0.01
seconds. During this simulation, the initial pressure pulse (5.72) reflects from the walls of the
domain a number of times and diffuses. Snapshots from the high-fidelity simulation are saved
every∆tsnap= 5×10−5 seconds, to yield a total ofKmax = 200 snapshots. These snapshots are
used to construct 10 mode POD bases in the various inner products considered. Eight of the ten
ROM approaches summarized in Table 5.2 are evaluated, namely those allowing the inclusion of
viscosity. The size of the POD basis is determined using an energy criterion (4.6) (see Section
4.1): a basis of size 10 is selected since it is found that 10 modes capture effectively 100% of the
snapshot energy (4.6).

Since the base flow for the viscous pulse example is uniform, in (5.1),G = 0 and theA i andK i j

matrices are spatially constant, meaning a symmetry ROM forthe linearized compressible Navier-
Stokes equations is expected to be time-stable and stable inthe sense of Lyapunov. Since the
dynamics for this example are effectively linear, the linearized ROMs are expected to capture well
the solution. A more accurate ROM solution is expected from the nonlinear ROMs, however, as
the high-fidelity solver is based on the full nonlinear equations.
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As for the 2D inviscid pulse problem, the first property studied is stability of the ROMs considered.
All eight ROMs remain stable during the time interval of interest. Both theL2 and symmetry lin-
earized ROMs are stable based on the eigenvalue criterion (Theorem 3.2.3). Note that this property
is not guaranteeda priori for linearizedL2 ROMs. Indeed, it is found that anL2 linearized ROM
exhibits instabilities for a variant of this test case (discussed below under the heading “Dimensional
vs. non-dimensional ROMs and stability”).

Having checked stability, the time history of the modal amplitudes is plotted and compared to the
projection of the snapshots onto the POD modes (5.69). The resulting curves for theM = 10 mode
nonlinear ROM constructed in theL2 inner product is shown here (Figure 5.7) as a representative
of the overall results, which are comparable for all ROMs considered. Agreement is excellent.
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Figure 5.7. Time history of modal amplitudes forM = 10 mode
nonlinear ROM constructed in theL2 inner product (2D viscous
pulse problem)

Next, relative errors in the ROM solutions with respect to the snapshots are calculated according
to the formula (5.70) and reported (Table 5.7). It is found that all eight ROMs16 evaluated deliver
comparable, accurate solutions. Although it was expected for the nonlinear ROMs to deliver a
more accurate solution than the linear ROMs, this does not appear to be the case.

As for the 2D inviscid pulse problem, it is interesting to compare the total fluid energy calculated
using the ROMs with the total fluid energy calculated using the snapshots. Figure 5.8 shows the
total fluid energy calculated using the linear ROMs comparedwith the total fluid energy calculated
using the snapshots. The total fluid energy calculated usingthe ROMs converges to the total fluid
energy calculated using the snapshots withM–refinement.

A somewhat surprising phenomenon is observed when examining the total fluid energy calculated
using the nonlinear ROMs: whereas the kinetic energy calculated using the ROMs agrees well with
the kinetic energy calculated using the FOM (Figure 5.9(a)), the same cannot be said of the internal
energy calculated using the nonlinear compressible Navier-Stokes ROM in the primitive variables

16Results for ROMs based on the nonlinear compressible Navier-Stokes physics and the total energy inner product
are not shown for theM = 18 case, due to unavailability of computational resources (Red Sky cluster downtime) at
the time the data for this report were collected.
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Table 5.7.ROM relative errorsErel,q (2D viscous pulse problem)

Physics
Inner

product
M = 5 M = 10 M = 15

Linearized
compr N-S

L2 4.77×10−6 1.42×10−6 1.23×10−6

symm 5.01×10−6 1.42×10−6 1.24×10−6

Nonlinear compr
isentropic N-S

L2 6.81×10−6 7.18×10−6 7.42×10−6

stag ene 1.50×10−5 1.23×10−5 1.24×10−5

stag enth 1.43×10−5 1.22×10−5 1.24×10−5

ζ–form nonlinear
compr N-S

L2 6.14×10−6 2.08×10−6 1.65×10−6

Nonlinear
compr N-S

L2 4.78×10−6 1.42×10−6 1.23×10−6

tot ene 4.33×10−6 1.51×10−6 −

(Figure 5.9(b)). Curiously enough, the internal energy calculated using ROMs based on theζ–form
of the compressible Navier-Stokes equations matches well the internal energy calculated using the
FOM. The reason for the discrepancy is not clear at the present time, and should be investigated in
future work.
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Finally, a visualization of the ROM solution17 for the u1 component of the velocity is compared
to theu1 snapshots at two times: the time of the 10th snapshot and the time of the 150th snapshot
(Figures 5.10 and 5.11, respectively). Good agreement between the ROM solution and the snapshot
is observed at both times.

17Without loss of generality, for the 10 mode nonlinearL2 ROM; solutions computed using the other ROMs were
indistinguishable from the solution shown.
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Figure 5.9.FOM vs. ROM kinetic and internal energies for non-
linear ROMs as a function of basis sizeM: solid lines =L2 ROMs,
dashed lines =ζ–formL2 ROMs, dotted lines = total energy ROMs
(2D viscous pulse problem)
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Figure 5.10.u1 contours at time of the 10th snapshot (2D viscous
pulse problem)

Dimensional vs. non-dimensional ROMs and stability

It is noted earlier that, although theL2 ROMs for the 2D viscous pulse problem considered above
are stable, this is not in general guaranteeda priori. Two interesting phenomena are observed
while testing the various ROMs proposed here:

• L2 ROMs based on viscous physics tend to be more stable than ROMsbased on inviscid
physics, suggesting viscosity has a stabilizing effect.

• L2 ROMs constructed in non-dimensional variables tend to be more stable than ROMs con-
structed in dimensional variables, suggesting that bad scaling in the ROM equations can
destabilize a ROM.
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Figure 5.11. u1 contours at time of the 150th snapshot (2D vis-
cous pulse problem)

Both tendencies are apparent in an inviscid version of the 2Dviscous pulse problem of Section
5.5.218. This problem, detailed in [55], is identical to the 2D viscous pulse problem of Section
5.5.2 except it has no viscosity:µ = λ = κ = 0. Two ROMs are constructed for this problem: an
M = 20 modeL2 ROM and anM = 20 mode symmetry ROM based on the linearized compressible
Euler equations in dimensional variables. Whereas the latter (symmetry) ROM is stable based on
the eigenvalue criterion (Theorem 3.3.3), the former (L2) ROM exhibits a severe instability, which
actually causes theL2 ROM to blow up by the time of snapshot 160 (Figure 5.12(c)).
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Figure 5.12.Pressure field at time of the 160th snapshot (inviscid
version of 2D viscous pulse problem)

5.5.3 Viscous laminar cavity

The third test case is that of a Mach 0.6 viscous laminar flow over a cavity in aT–shaped domain
Ω = [(−6.4244,10)×(−1,10)×(0,0.1)]\[(−6.4244,0)×(−1,0)×(0,0.1)]\[(2,10)×(−1,0)×

18Note that this is a different problem than the 2D inviscid pulse problem of Section 5.5.1.
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(0,0.1)]. The flow conditions are similar to case L2 in [80]. The free stream pressure is 25 Pa,
the free stream temperature is 300 K, and the free stream velocity is 208.8 m/s. The free stream
pressure is kept low to keep the Reynolds number of the flow low. Two instances of the cavity
problem, at two different Reynolds numbers, are considered:

• Re= 1090.4 (referred to asRe≈ 1000).

• Re= 1453.9 (referred to asRe≈ 1500).

The viscosityµ is spatially constant and calculated such that the above Reynolds numbers are
achieved. The viscosity coefficientλ is calculated fromµ using the Stokes’ law relation (5.37).
The thermal conductivityκ is also constant, calculated such thatPr = 0.72. The high-fidelity
simulations are performed using theSIGMA CFD code in DNS mode. The following boundary
conditions are specified inSIGMA CFD:

• At the inflow boundary (labeled 1 in Figure A.1), a value of thevelocity and temperature
that is above the free stream values is specified.

• The flow at the cavity walls (labeled 3 in Figure A.1) is assumed to be adiabatic and to satisfy
a no-slip condition.

• The remaining outflow boundaries (labeled 2 in Figure A.1) are open, and a far-field bound-
ary condition that suppresses the reflection of waves into the computational domain is im-
plemented here (Section A.5.1).

The high-fidelity simulation is initialized by setting the flow in the cavity to have a zero velocity,
free stream pressure, and temperature. The region above thecavity is initialized to free stream
conditions and the flow is allowed to evolve. The discretizeddomain, illustrated in Figure 5.13,
consists of 98,408 nodes, cast as 292,500 tetrahedral finiteelements withinSpirit. The reader
can observe that the mesh is structured but non-uniform.

For each of the three Reynolds numbers considered, a total ofKmax= 100 snapshots are collected
from SIGMA CFD, taken every∆tsnap= 1.0×10−4 seconds, starting at timet = 5.0×10−2 seconds
until time Tmax = 6.0× 10−2 seconds. The snapshot collection begins at timet = 5.0× 10−2

seconds instead of at timet = 0 because it is around this time that a statistically stationary flow
regime is reached19. The snapshots are used to construct POD bases of size 5, 10, 15 and 20 modes
in the various inner products evaluated (for each Reynolds number considered). These bases are
used to build POD/Galerkin ROMs using seven of the eight viscous ROM approaches summarized
in Table 5.2. Results for ROMs based on the nonlinear compressible Navier-Stokes physics and
the total energy inner product are not shown, due to unavailability of computational resources
(Red Sky cluster downtime) at the time the data for this report were collected. ROMs based on the
isentropic compressible Navier-Stokes equations (5.48) (Section 5.3.3) are also tested, as the flow
conditions in the cavity are such that the isentropic assumption is reasonable [81].

19Statistically stationary conditions are determined by examining the pressure fluctuations at several locations on
the cavity walls.

65



Figure 5.13.Domain and mesh for viscous laminar cavity prob-
lem

Linear vs. non-linear ROMs: expected performance

Unlike the pressure pulse problems considered in Sections 5.5.1 and 5.5.2, the viscous laminar
cavity problem is inherently nonlinear, and does not possess a natural steady base flow component.
It is therefore expected that a ROM based on the full nonlinear physics is needed to accurately
represent the inherently nonlinear dynamics that form within the cavity, namely vortices which
convect. To give a complete picture, ROMs based on the linearized compressible Navier-Stokes
equations constructed using both theL2 and the symmetry inner product are tested as well. In the
linearized ROMs, the base flow is taken to be the average of thesnapshots. The viscous work terms
are included in the ROM equations (A.2) (see Appendix A.2).

In the local linearization approach outlined in the previous paragraph, the nonlinear dynamics of
the flow are captured in the POD modes (Figure 5.15) but not in the equations projected onto
these modes. Since a ROM based on linearized equations cannot be expected to reproduce all the
nonlinear dynamics in the solution of an inherently nonlinear problem such as the viscous laminar
cavity problem, some discussion of what features the linearized ROMs can and cannot be expected
to capture is in order. The physics of the cavity flow are determined by the shear layer over the
cavity. As the shear layer separates from the leading edge ofthe cavity, instabilities develop in the
separated shear layer. These instabilities grow nonlinearly to form vortices convecting down the
shear layer. This process is an inviscid instability growthprocess and arises due to the nonlinear
terms in the convective part of the Navier-Stokes equations. ROMs built using a linearized form
of the Navier-Stokes equations cannot be expected to capture accurately this phenomenon. Further
downstream, the vortices impinge on the aft wall of the cavity giving rise to pressure waves that are
propagated upstream through the free stream and the cavity.Depending upon the Reynolds number
(and hence the free stream dynamic pressure), these waves can range from linear to nonlinear.
Since the pressure fluctuations on the cavity walls are due toa combination of these waves and
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those generated by the shear layer vortices, it is expected that only the linear reflected waves
should be captured by the linearized ROMs.

Numerical experiments involving the linearized ROMs reveal that, for problems with a non-uniform
base flow (such as the viscous laminar cavity), it is criticalto include the gradient of the base flow
terms (the matrixG in (5.22) or (5.26)) in the equations projected onto the POD modes in the
model reduction. Failure to include these terms will likelyresult in a ROM solution with incorrect
dynamics (Figure 5.14(a)). In the case that the base flow is uniform (e.g., the 2D inviscid and
viscous pulse problems), this matrix vanishes.

Unfortunately, the inclusion of the gradient of the base flowterms (theG matrix in (5.22) or (5.26))
may yield a ROM that is not time-stable. If a cavity problem has a feedback loop resonance, such
as the viscous laminar cavity problem, it is thenonlinearsaturation of the shear layer instabilities
(i.e., vortex roll-up) that bounds the amplitude of the flow response. One might expect a linear
model to be unstable, therefore: theG matrix could activate a shear layer instability. Viscosity
may work to damp out this instability at low Reynolds numbers.

In the case of a viscous problem, note also that the energy-stability result of Corollary 5.2.1 is
not valid if the viscous work terms are included in the ROM equations (A.2). A ROM based
on equations having these terms may therefore exhibit a non-physical instability (Section A.2).
The extension of the energy-stability symmetrization approach presented in Section 5.2 to the
linearized compressible Navier-Stokes equations in whichthe viscous work terms are retained
(A.2) is a worthwhile future research endeavor.
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Figure 5.14.Effect of including gradient of base flow (G matrix
in (5.22)) in linearized ROM: time history of modal amplitudes for
M = 15 mode linearized ROM constructed in theL2 inner product
without (left) and with (right) theG matrix (viscous laminar cavity,
Re≈ 1500)
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 5 (e) Mode 10

Figure 5.15.POD modes foru1(x, t) in L2 inner product (viscous
laminar cavity,Re≈ 1500)

Basis size selection

It is both interesting and useful to get an idea of the size of the POD basis that is required to
capture the majority of the snapshot energy (4.6) before building and evaluating the various ROMs
of interest. Table 5.8 gives the percent snapshot energy captured by the reduced basis modes as a
function ofM, the basis size, andRe, the Reynolds number20. The reader can observe that more
modes are required to capture the same percentage of the snapshot energy as the Reynolds number
is increased. Still, a relatively small number of modes capture most of the snapshot energy: just 15
modes capture approximately 99% of the snapshot energy for both Reynolds numbers considered.
This is due to the fact that the Reynolds numbers considered here are not that high. For higher
Reynolds numbers and turbulent flows, it is expected that many more modes (M = O(100)) will
be required to capture a large proportion of the snapshot energy.

Table 5.8.POD mode snapshot energy percentages as a function
of basis sizeM and Reynolds numberRe(viscous laminar cavity
problem)

M = 5 M = 10 M = 15 M = 20
Re≈ 1000 94.92% 98.36% 99.06% 99.33%
Re≈ 1500 91.01% 98.54% 99.44% 99.69%

20Table 5.8 gives the average snapshot fluctuation energy overall the inner products considered. For the nonlinear
approaches, the energy in the first mode is omitted, as this represents effectively the energy in the mean flow; Figure
5.15(a).
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Figure 5.16 plots the POD basis singular values (eigenvalues of the operatorR in (4.4); see Section
4.1) on a semilog plot as a function of the basis sizeM. It is of interest for POD reduced order
modeling how fast these singular values decay. The reader can observe a fairly rapid decay of the
singular values for both Reynolds numbers considered.
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Figure 5.16.POD basis singular values (semilog plot) as a func-
tion of basis sizeM and Reynolds numberRe (viscous laminar
cavity problem)

ROM accuracy in representing the snapshots

First, the errors in the solutions produced by the ROMs studied are calculated using the formula
(5.70) (Table 5.9 forRe≈ 1000 and Table 5.10 forRe≈ 1500). The reader can observe from
Tables 5.9 and 5.10 that all ROMs considered achieve a relative error of between 1% and 10% with
respect to the high-fidelity snapshots from which they are constructed. TheRe≈ 1000 ROMs are in
general more accurate than theRe≈ 1500 ROMs. Convergence of the ROMs withM–refinement
is not observed, which suggests there is a limit to the accuracy the ROMs can achieve for the
viscous laminar cavity problem. It is curious to observe that the ROMs based on the linearized
physics are in some cases more accurate than the ROMs based onnonlinear physics. This result is
unexpected, and leads one to prefer the linear ROMs over the nonlinear ROMs, as they are cheaper
to evaluate. It is worthwhile to investigate why the nonlinear ROMs are not more accurate than the
linear ROMs for this problem in future work.

Also interesting to note is that the ROMs based on theζ–form of the compressible Navier-Stokes
equations do not deliver a solution with the same accuracy asthe ROMs based on the nonlinear
compressible Navier-Stokes equations in the primitive variables. This is likely due to the fact that
the different formulations, although mathematically equivalent, give rise to different POD modes.

As a sample illustration, the time history of the third and fourth ROM modal amplitudes compared
to the projection of the snapshots onto the third and fourth POD modes for theM = 20 isentropic
ROM constructed in the stagnation energy inner product for theRe≈ 1500 instance of the viscous
laminar cavity are shown in Figure 5.17. Figure 5.18 shows contours of theu1–velocity at the
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Table 5.9. ROM relative errorsErel,q (viscous laminar cavity,
Re≈ 1000)

Physics
Inner

product
M = 5 M = 10 M = 15 M = 20

Linearized
compr N-S

L2 3.03×10−2 3.04×10−2 3.85×10−2 4.57×10−2

symm 2.94×10−2 2.98×10−2 3.73×10−2 5.17×10−2

Nonlinear compr
isentropic N-S

L2 1.92×10−2 2.12×10−2 2.42×10−2 2.21×10−2

stag ene 3.27×10−2 3.81×10−2 5.37×10−2 3.38×10−2

stag enth 3.23×10−2 3.53×10−2 4.30×10−2 3.11×10−2

ζ–form nonlinear
compr N-S

L2 3.97×10−2 4.20×10−2 4.24×10−2 4.92×10−2

Nonlinear
compr N-S

L2 2.88×10−2 2.93×10−2 2.86×10−2 2.94×10−2

Table 5.10. ROM relative errorsErel,q (viscous laminar cavity,
Re≈ 1500)

Physics
Inner

product
M = 5 M = 10 M = 15 M = 20

Linearized
compr N-S

L2 3.03×10−2 3.04×10−2 3.85×10−2 4.57×10−2

symm 2.96×10−2 2.98×10−2 3.73×10−2 5.17×10−2

Nonlinear compr
isentropic N-S

L2 1.98×10−2 2.79×10−2 2.73×10−2 2.76×10−2

stag ene 4.18×10−2 4.59×10−2 4.63×10−2 2.31×10−2

stag enth 4.10×10−2 4.53×10−2 4.33×10−2 2.69×10−2

ζ–form nonlinear
compr N-S

L2 6.27×10−2 9.13×10−2 1.01×10−1 6.45×10−2

Nonlinear
compr N-S

L2 4.53×10−2 5.11×10−2 4.82×10−2 4.21×10−2

times of the 1st, 50th and 100th snapshot for this ROM solution compared with the FOM solution.
The figures reveal that the ROM is able to capture accurately the solution dynamics.

ROM accuracy in representing snapshot kinetic and internalenergies

Next, the fluid kinetic and internal energies calculated using the linear (Figures 5.19 and 5.22)
and nonlinear21 (Figures 5.21 and 5.24) ROMs are compared with the fluid kinetic and internal
energies calculated using the FOM. The fluid specific and stagnation energies (Figures 5.20 and
5.23) calculated using the isentropic ROMs are also compared with the fluid specific and stagnation
energies calculated using the FOM. Only the specific energies for theRe≈ 1500 isentropic ROMs
agree well with that of the snapshots (Figure 5.23(a)). It isnot known at the present time why this

21Results for theζ–form ROMs are not shown, as they are indistinguishable fromthe nonlinear ROM results.
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Figure 5.17.Time history of modal amplitudes forM = 20 mode
nonlinear isentropic ROM constructed in the stagnation energy in-
ner product (viscous laminar cavity,Re≈ 1500)

is the case.

ROM efficiency

Lastly, efficiency of the various ROMs evaluated is examined. Table 5.11 gives the total CPU times
for the offline (quadrature weight calculation and Galerkinprojection) and online (time-integration
using a fourth order Runge-Kutta scheme with a time increment of ∆t = 1.0×10−5 seconds) stage
of the model reduction for the various ROMs. All times are in seconds. The times reported under
the “offline stage” header are fromSpirit and are averages over a total of 96 processors of the Red
Sky cluster. The times reported under the “online stage” header are calculated in MATLAB using
thetic/toc command on a CEE Remote Graphics Workstation, and are for serial (one processor)
runs. It takes between 20–30 seconds to calculate a POD basisof sizeM = 25 fromKmax= 100
snapshots in parallel on 96 processors on the Red Sky clusterfor all the ROMs.

The reader can observe that both the offline and online stagesof the model reduction take signifi-
cantly more time for the nonlinear compressible Navier-Stokes ROMs than the offline and online
stages for ROMs based on the linear, nonlinear isentropic, and nonlinearζ–form of these equa-
tions. The relative expense of the nonlinear compressible Navier-Stokes ROM increases at an
exponential rate withM. This is a result of the fact that, for the compressible Navier-Stokes equa-
tions in the primitive variables, the computation of higher-order ROM coefficient tensors (in the
offline stage) and tensor/vector products involving these higher-order tensors (in the online stage)
is required. Efficiency of the nonlinear compressible Navier-Stokes ROMs can be recovered by
using interpolation to handle the nonlinear terms appearing in the ROM equations, e.g., DEIM
[29], “best points” interpolation [74, 75], or gappy POD [33] (Section 4.4).

Additional numerical results for the viscous laminar cavity, in which the ROM is constructed from
a total ofKmax= 500 snapshots and run until timeTmax= 0.1 seconds, can be found in Appendix
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Table 5.11. CPU times (in seconds) for offline Galerkin projec-
tion and online time-integration stages of the model reduction for
the ROMs considered (viscous laminar cavity problem)

POD basis size ROM
Offline stage:

Galerkin projection
(Spirit, 96 procs)

Online stage:
time-integration

(MATLAB, 1 proc)

M = 5

Linear
compr N-S

1.46 2.09

Nonlinear isentropic
compr N-S

1.31 2.38

ζ–form
nonlinear compr N-S

1.74 2.93

NonlinearL2

compr N-S
7.17 1.01×101

M = 10

Linear
compr N-S

1.32 2.76

Nonlinear isentropic
compr N-S

8.81 3.48

ζ–form
nonlinear compr N-S

1.13×101 3.67

NonlinearL2

compr N-S
8.31×101 8.31

M = 15

Linear
compr N-S

2.80 2.96

Nonlinear isentropic
compr N-S

1.92×101 5.01

ζ–form
nonlinear compr N-S

2.98×101 4.51

NonlinearL2

compr N-S
4.01×102 1.65×101

M = 20

Linear
compr N-S

4.22 3.14

Nonlinear isentropic
compr N-S

4.82×101 5.33

ζ–form
nonlinear compr N-S

7.37×101 5.56

NonlinearL2

compr N-S
2.15×103 2.42×101
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(a) Time of 1st snapshot (b) Time of 50th snapshot

(c) Time of 100th snapshot

Figure 5.18.u1–velocity contours at several times for FOM com-
pared toM = 20 nonlinear isentropic ROM constructed in the stag-
nation energy inner product (viscous laminar cavity,Re≈ 1500)

A.6.

5.6 Summary

In this chapter, the energy-stability preserving model reduction approach developed specifically for
the equations of linearized compressible inviscid flow in [20, 57] is generalized: for ROMs con-
structed using the continuous projection approach, it is shown that a transformation of a generic
PDE system of the hyperbolic or incompletely parabolic typeleads to a stable formulation of the
Galerkin ROM for this system. It is then shown that, for many linear PDE systems, the said trans-
formation is induced by a special inner product, referred toas the “symmetry inner product”. If the
Galerkin projection step of the model reduction procedure is performed in this inner product, the
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Figure 5.19.FOM vs. ROM kinetic and internal energy for linear
ROMs as a function of basis sizeM: solid lines =L2 ROMs, dashed
lines = symmetry ROMs (viscous laminar cavity,Re≈ 1000)
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Figure 5.20. FOM vs. ROM specific and stagnation energy for
isentropic ROMs as a function of basis sizeM: solid lines =L2

ROMs, dashed lines = stagnation energy ROMs, dashed-dot lines
= stagnation enthalpy ROMs (viscous laminar cavity,Re≈ 1000)

resulting ROM is guaranteed to satisfy certain stability bounds regardless of the reduced basis em-
ployed. Examples of the symmetry inner product for linear systems of PDEs that commonly arise
in modeling applications (e.g., the linearized compressible Euler and Navier-Stokes equations; the
wave equation; the linearized shallow water equations) aregiven.

Next, approaches for building energy-stable ROMs for the equations of nonlinear compressible
flow, the PDEs of interest in the targeted compressible captive-carry application, are explored.
Three forms of the nonlinear compressible Navier-Stokes equations are considered: the full com-
pressible Navier-Stokes equations in the primitive variables, theζ–form of the full compressible
Navier-Stokes equations, and the isentropic compressibleNavier-Stokes equations. An inner prod-
uct that induces the integrated stagnation energy or stagnation enthalpy of the flow, proposed origi-
nally by Rowleyet al. in [81] for the isentropic compressible Navier-Stokes equations, is reviewed.
This inner product motivates the derivation of anewtransformation and corresponding energy in-
ner product for the full compressible Navier-Stokes equations, presented for the first time in this
report. The proposed new inner product induces the total energy of the fluid system, a physically
meaningful quantity that is conserved for problems in whichno external forcing is applied. If the
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Figure 5.21.FOM vs. ROM kinetic and internal energy for non-
linear ROMs as a function of basis sizeM: solid lines =L2 ROMs
(viscous laminar cavity,Re≈ 1000)
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Figure 5.22.FOM vs. ROM kinetic and internal energy for linear
ROMs as a function of basis sizeM: solid lines =L2 ROMs, dashed
lines = symmetry ROMs (viscous laminar cavity,Re≈ 1500)

projection step of the model reduction is performed in the total energy inner product, the resulting
Galerkin ROM should preserve the stability of an equilibrium point at the origin for the governing
equations.

A stability-preserving discrete implementation of the continuous Galerkin projection method is
developed. A parallel C++ code,Spirit, that was developed as a part of this LDRD project and
builds ROMs for various linearized as well as nonlinear compressible flow physics using contin-
uous Galerkin projection in several inner products is described. The code uses vector data struc-
tures and parallel eigensolvers from the Trilinos project [49] and the quadrature routines from the
libmesh finite element library [63]. As a stand-alone code,Spirit can be synchronized with
any high-fidelity solver that can output a mesh and snapshot data stored at the nodes of this mesh,
including the Sandia in-house LES flow solver used in the captive-carry application,SIGMA CFD.

The performance of the various ROMs described in this chapter is evaluated on three test cases:
a 2D inviscid pulse problem, a 2D viscous pulse problem, and aviscous laminar cavity problem
at several Reynolds numbers. For all three tests, emphasis is placed on reproducing a given CFD
solution for a single set of flow conditions in a stable and accurate fashion, as this is a prerequisite
to using the ROM in a predictive setting. The first two test cases have effectively linear dynamics,
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Figure 5.23. FOM vs. ROM specific and stagnation energy for
isentropic ROMs as a function of basis sizeM: solid lines =L2

ROMs, dashed lines = stagnation energy ROMs, dashed–dot lines
= stagnation enthalpy ROMs (viscous laminar cavity,Re≈ 1500)
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Figure 5.24.FOM vs. ROM kinetic and internal energy for non-
linear ROMs as a function of basis sizeM: solid lines =L2 ROMs
(viscous laminar cavity,Re≈ 1500)

whereas the third case has inherently nonlinear dynamics, namely vortices that convect, and is
posed on the geometry of interest in the targeted application (an openT–shaped cavity).

For the first two test cases, all linear as well as nonlinear ROMs considered perform compara-
bly, and capture well the snapshots from which they are constructed. For these problems, the
linearized ROMs are sufficient and recommended due to their lower computational cost. The pro-
posed energy-stable ROMs do indeed possess better numerical stability properties than theirL2

ROM counterparts, which lack in general ana priori stability guarantee. There is, however, an
unexpected discrepancy between the internal energy calculated using the nonlinear ROMs for the
2D viscous pulse test case and the internal energy calculated using the snapshots.

For the third test case, the viscous laminar cavity problem,all linear and nonlinear ROM ap-
proaches deliver a solution with approximately the same accuracy. The ROM solutions are reason-
able but convergence of the ROM solution withM–refinement is not in general observed, and the
ROMs do not accurately reproduce the fluid total energy for the entire time interval considered.
Further numerical experiments performed for the viscous laminar cavity (Appendix A.6) demon-
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strate that the POD/Galerkin approach may yield ROMs that are unreliable for longer time cavity
simulations, even when an energy inner product is employed to do the Galerkin projection. The
method seems highly dependent on the set of snapshots employed in calculating the POD basis:
when more snapshots are included in the basis calculation, many of the ROMs exhibit unexpected
instabilities (Appendix A.6).

5.6.1 Prospects for future work

Further code verification is recommended to ensure a bug-free implementation of the proposed
energy inner products inSpirit. It may be possible to improve the accuracy of the proposed
nonlinear ROMs for compressible cavity problems by applying some recently proposed ideas,
e.g., through the incorporation of fine-scales into the ROM basis [5, 76, 22, 15, 92], through the
addition of LES turbulence closure terms to the ROM equations [94], through the incorporation
of boundary condition terms in the ROM equations [39, 57] (Appendix A.5), and/or through an
adaptiveh–refinement of the ROM basis [26]. It may also be worthwhile tosee if the situation can
be improved by devising specialized snapshot collection/sampling methods (e.g., methods based
on “optimal” sampling strategies [70]; methods in which low-energy modes are included in the
POD basis [82, 15]). It is conjectured that using a set of snapshots spaced closer together in time
(i.e., with a smaller∆tsnap) to construct the POD basis may yield a more accurate and stable ROM
for the viscous laminar cavity problem [14]. For problems with a periodic limit-cycle solution
like the viscous laminar cavity problem, using a snapshot set representing just one period of the
solution to calculate the POD basis may also give rise to a better ROM [14]. Lastly, it has been
argued that POD modes corresponding to complex conjugate pair singular values of the snapshot
matrix (eigenvalues of the operatorR in (4.4); see Section 4.1) should be retained in pairs in the
POD basis truncation [82, 14]. This strategy is not employedin all the experiments summarized in
this report, and may be considered in the future.

An additional concern worth addressing in future work involves the efficiency of ROMs con-
structed using the proposed total energy inner product for the nonlinear compressible Navier-
Stokes equations. As discussed earlier in this chapter, theformulation requires the projection
of high-order polynomial terms in the offline stage of the model reduction, and the evaluation of
tensor/vector products involving large ROM coefficient tensors in the online stage of the model re-
duction, which can invalidate the termreducedorder model except for very smallM. This difficulty
can be overcome through the incorporation of interpolationmethods, e.g., the discrete empirical
interpolation method (DEIM) [29], “best points” interpolation [74, 75], or gappy POD [33], into
the ROM approach. A theoretical and numerical study of the effect of such interpolation methods
on ROM accuracy and stability would be required.

Per the discussion in Chapter 1, Large Eddy Simulations of the captive-carry scenario performed
using theSIGMA CFD code can take on the order of weeks to complete, as long run-times and
fine meshes are required. The ultimate goal is to use in place of these high-fidelity simulations
a ROM constructed from some set of high-fidelity snapshots. Achieving this goal requires the
implementation of model reduction capabilities inSIGMA CFD, a task planned for the near future.
In order to be useful, the ROM approach selected for this implementation must:
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• Be capable of predicting the cavity dynamics beyond the time-horizon up to which the snap-
shots were collected and for a different set of flow conditions. A model reduction method
that delivers ROMs which are robust with respect to parameter changes, e.g., different flow
conditions, is required. A survey of the literature suggests that a general fast and robust
method for adapting pre-computed ROMs to a new set of physical or modeling parameters is
still lacking at the present time, although some promising ideas have been proposed [6, 26].

• Be reliable and fast enough to be used for on-the-spot analysis (e.g., uncertainty quantifica-
tion, flow control).The ROM-based analysis of particular interest to Sandia is in the area of
uncertainty quantification (UQ). Here, the idea would be to replace the high-fidelity model
in a sampling-based Markov Chain Monte Carlo (MCMC) algorithm with a ROM, which,
unlike the high-fidelity simulation, can be queried many times in real or near-real time at
a low computational complexity. For a survey of ROM-based UQmethods for the captive
carriage application, the reader is referred to [18]. Also of interest for the captive carriage
application is ROM-based flow control, with is discussed briefly in Appendix A.11 and may
be pursued further in future research.

The numerical tests performed as a part of this LDRD project and summarized in this chapter
suggest the POD/Galerkin approach may not be the best choiceof model reduction method for
the compressible cavity problems simulated usingSIGMA CFD. Other approaches, e.g., the GNAT
method [27], have yielded promising results for problems such as these, and may be a better
option.
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Chapter 6

Stable ROMs via discrete projection

Chapter 5 focuses on the construction of energy-stable projection-based ROMs for linear as well
as nonlinear conservation laws using continuous projection. Attention is now turned to developing
stable projection-based ROMs using the discrete projection approach. Only linear time-invariant
(LTI) systems (Section 4.5) are considered, as a first step towards the more general nonlinear case.
One advantage of the discrete projection approaches described in this chapter over the continu-
ous projection approaches of Chapter 5 is that the discrete approaches can be implemented in a
“black-box” fashion, that is, without requiring access to the governing PDEs or high-fidelity code
discretizing these PDEs. A consequence of this property is that the approaches are not limited to
a particular physics set (e.g., the compressible captive-carry problem); they can be applied toany
problem inanyapplication.

In Section 6.1, a discrete counterpart of the symmetry innerproduct (developed in Section 5.2
for linearized conservation laws) is derived. This inner product is termed the “Lyapunov inner
product”, and was first proposed in the context of model reduction by Rowleyet al. in [81], but
has not been tested extensively at the present time. A numerical study of the performance of ROMs
constructed in this inner product is undertaken here.

In Section 6.2, anewapproach for building stable projection-based ROMs for LTIsystems is devel-
oped. The approach, termed “ROM stabilization via eigenvalue reassignment”, stabilizes unstable
ROMs through ana posterioripost-processing step applied to the algebraic ROM system. This
stabilization step consists of a reassignment of the eigenvalues of the ROM system matrix and
is motivated by ideas from control theory [11, 96]. Accuracyof the stabilized ROM is ensured
through the formulation and numerical solution of a constrained nonlinear least-squares optimiza-
tion problem in which the error in the ROM output is minimized.

For more detail on the methods described in this chapter, thereader is referred to the following
journal articles and SAND reports, written as a part of this LDRD project: [59, 60, 61].

In each of the main section of this chapter, Section 6.1 and Sections 6.2, the methods described
therein are tested on the same two test cases, referred to as the international space station (ISS)
benchmark and the electrostatically actuated beam benchmark. The avoid unnecessary repetition,
the test cases are summarized here. For both examples, the error in the ROM output relative to the
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full order model output is computed and reported. This valueis calculated using the formula

Erel,y =

√

√

√

√

∑Kmax
i=1 |yQN(ti)−yQM(ti)|

∑Kmax
i=1 |yQN(ti)|

. (6.1)

Here the symbolKmaxdenotes the integer such thatTmax= Kmax∆tsnap, whereTmax is the maximum
time until which the ROM is run. The notation| · | in (6.1) denotes the absolute value, which
evaluates to a scalar for the numerical examples consideredherein, as they both have one output
(Q = 1 in (4.18)).

Benchmark #1: International space station (ISS)

The first numerical example involves a structural model of the Russian service module component
of the international space station (ISS) [10]. This servicemodule is a large flexible structure whose
dynamics can be described using a linearized form of the equations of motion (a second order PDE
system). Written in first order LTI form, the model consists of a system of the form (4.18) with
N = 270. The matricesA, B andC defining (4.18) are downloaded from the ROM benchmark
repository [28]. The matrixA is sparse, as it comes from a finite element discretization. Asingle
output is considered, corresponding to the first row of the matrix C. It is verified that the FOM
system is stable: the maximum real part of the eigenvalues ofA is−0.0031.

Benchmark #2: Electrostatically actuated beam

The second numerical example is that of an electrostatically actuated beam. Applications for this
model include microelectromechanical systems (MEMS) devices such as electromechanical radio
frequency (RF) filters [68]. Given a simple enough shape, these devices can be modeled as one-
dimensional beams embedded in two or three dimensional space. The beam considered here is
supported on both sides, and has two dofs: the deflection perpendicular to the beam (the flexural
displacement), and the rotation in the deformation plane (the flexural rotation). The equations of
motion are determined from a Lagrangian formulation. It is assumed that the beam deflection is
small, so that geometric nonlinearities can be neglected. The resulting linear PDEs are discretized
using the finite element method following the approach presented in [54, 68]. The result of this
discretization is a second order linear semi-discrete system of the form:

Mẍ(t)+Eẋ(t)+Kx(t) = Bu(t)
y(t) = Cx(t),

(6.2)

whereẍ≡ ∂ 2x
∂ t2 . The input matrixB corresponds to a loading of the middle node of the domain, and

y(t) is the flexural displacement at the middle node of the domain.The damping matrixE is taken
to be a linear combination of the mass matrixM and the stiffness matrixK :

E = cMM +cKK , (6.3)

with cM = 102 andcK = 10−2. Letting ˙̃x(t)≡ x(t), the second order system (6.2) can be written as
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the following first order system:
(

E M
I 0

)(

ẋ(t)
˙̃x(t)

)

+

(

K 0
0 −I

)(

x(t)
x̃(t)

)

=

(

B
0

)

u(t)

y(t) =
(

C 0
)

(

x(t)
x̃(t)

)

,
(6.4)

or
ż(t) = Az(t)+ B̃u(t)
y(t) = C̃z(t),

(6.5)

wherez(t)≡
(

x(t)
x̃(t)

)

∈ R2N and

A ≡
(

0 I
−M−1K −M−1E

)

, B̃≡
(

0
M−1B

)

, C̃≡
(

C 0
)

. (6.6)

The matricesM andK in (6.2), which are sparse, as they come from a finite element discretization,
are downloaded from the Oberwolfach model reduction benchmark collection [3]. These global
matrices are then disassembled into their local counterparts, and reassembled to yield a discretiza-
tion of any desired size. In the full order model for which results are reported here,N = 5000, so
(6.5) has 10,000 dofs. It is verified that the full order system is stable: the maximum real part of the
eigenvalues ofA is−0.0016. It is worthwhile to note that, unlike for the ISS example, the matrix
A that defines the system (6.5) for the electrostatically actuated beam test case isnot sparse. In
particular, it is straightforward to see from (6.5) that this matrix is of the formA =

(

A1, A2
)T

whereA1 ∈RN×N is sparse, butA2 ∈ RN×N is dense.

6.1 Stability-preserving Lyapunov inner product

In Chapter 5, a method for constructing energy-stable ROMs via continuous projection of a system
of PDEs was presented. The discussion in Chapter 5 motivatesthe following question: can the
energy inner product be determined in a black-box fashion for any given full order model system?
It is shown in the present section that there is a discrete counterpart of the symmetry inner product
(recall that the symmetry inner product is the energy inner product for linear conservation laws;
Section 5.2), first derived by Rowleyet al. [81] and termed the “Lyapunov inner product” herein.
Although the Lyapunov inner product has appeared in severalpublications [81, 85, 8], to the au-
thors’ knowledge, a numerical study of the properties and performance of POD ROMs constructed
in the Lyapunov inner product is lacking from the literatureat the present time, and one of the
contributions of this work.

Consider an LTI system of the form (4.18). Suppose the systemis stable in the sense of Lyapunov,
i.e., all eigenvalues of the matrixA have non-positive real parts (Theorem 3.2.3). SinceA is stable,
there exists a Lyapunov function for

ẋN(t) = AxN(t). (6.7)
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In particular,
V(xN) = xT

NPxN, (6.8)

is a Lyapunov function for (6.7), whereP is the solution of the following Lyapunov equation:

ATP+PA =−Q. (6.9)

Here,Q is some positive-definite matrix [11]. A positive definite solutionP to (6.9) exists provided
A is stable. Moreover, ifQ is symmetric,P is symmetric as well. GivenA andQ, a solution to the
Lyapunov equation (6.9) can be obtained, for instance, using thelyap function in the MATLAB
control toolbox [2]:

P = lyap(A’, Q, [], speye(N, N)).

Assume the system (6.7) is stable and a positive-definite symmetric P has been computed from
(6.9). SinceP is symmetric positive-definite, the following

(

x(1)
N ,x(2)

N

)

P
≡ x(1)T

N Px(2)
N , (6.10)

defines an inner product. LetΦΦΦM be a reduced basis of sizeM, so that

xN(t)≈ΦΦΦMxM(t), (6.11)

wherexM(t) denotes the ROM solution. Theorem 6.1.1 (summarized here from [81] to keep this
report self-contained) shows that (6.10) is the energy inner product for this system.

Theorem 6.1.1 (from [81]):Assume the linear full order system (6.7) is stable. Supposea ROM
for (6.7) is constructed via a Galerkin projection in the(·, ·)P inner product (6.10), to yield the
following reduced linear system:

ẋM = ΦΦΦT
MPAΦΦΦMxM, (6.12)

where it has been assumed that the basisΦΦΦM has been constructed to be orthonormal in the(·, ·)P
inner product, i.e.,ΦΦΦT

MPΦΦΦM = IM whereIM denotes theM×M identity matrix. Then, the ROM
(6.12) is energy-stable, time-stable and stable in the sense of Lyapunov.

Proof. It is shown that the energyEM ≡ 1
2||xM||22 of the ROM system (6.12) is non-increasing:

dEM
dt = 1

2
d
dt (xM,xM)2

= xT
MẋM

= xT
MΦΦΦT

MPAΦΦΦMxM

= xT
MΦΦΦT

M

(

1
2PA+ 1

2PTA
)

ΦΦΦMxM

= xT
MΦΦΦT

M

(

1
2PA+ 1

2ATP
)

ΦΦΦMxM

=−1
2xT

MΦΦΦT
MQΦΦΦMxM

< 0,

(6.13)

sinceQ > 0. It follows that (6.12) is time-stable, stable in the sense of Lyapunov and energy-stable
(Section 3).
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The Lyapunov inner product (6.10) is a discrete counterpartof the continuous symmetry inner
product (5.16). This inner product can be employed to construct stable Galerkin ROMs for LTI
systems of the form (4.18) using discrete projection. An interesting question that arises is whether
the matrixP defining the Lyapunov inner product (6.10) is related in someway to the matrixW
(5.67) that is used to perform the continuous projection in the symmetry inner product. In general,
the answer is no. In particular,W is by construction a sparse matrix (Figure 6.1(a)), whereasP may
be dense even ifA is sparse. This is clear from Figures 6.1(b) and (c), which show (respectively)
the sparsity pattern of a sampleA matrix1, and its correspondingP matrix.
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Figure 6.1. Sparsity structure of representativeP matrix for a
given sparseA matrix compared to sparsity structure of represen-
tativeW matrix

One downside of the Lyapunov inner product is that the matrixP which defines this inner product
is admittedly expensive to compute: the cost of solving the Lyapunov equation (6.9) requires
O(N3) operations. As a consequence, the Lyapunov inner product has the same downside as
another model reduction approach with ana priori stability guarantee, namely balanced truncation
[73, 42]: it may not be practical to compute the matrixP defining the Lyapunov inner product for
very large systems.

It is worthwhile to note that computingP (6.9) is less computationally intensive than reducing a
system using balanced truncation, which requires the solution of two Lyapunov equations for the
so-called observability and reachability Gramiansandthe factorizations of these Gramians [73, 42]
(see Appendix A.7). The computational cost of calculating the weighting matrix that defines the
Lyapunov inner product relative to the computational cost of reducing a system using balanced
truncation is studied numerically in Section 6.1.1. Note that it can be shown that the balanced
truncation algorithm may be viewed as a projection algorithm in a special Lyapunov inner product
[81]. A proof uncovering this connection is given in Appendix A.8.

As observed earlier for the symmetry inner product, it is clear from (6.12) that the Galerkin projec-
tion of the system (6.7) in the Lyapunov inner product (6.10)can be viewed as a Petrov-Galerkin
projection of this system in the regularL2 inner product, with the reduced test basis given by

1The A matrix whose sparsity pattern is shown in Figure 6.1(b) is the “PDE example” in the SLICOT model
reduction benchmark repository [28].
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ΨΨΨM = PΦΦΦM, whereΦΦΦM is the reduced trial basis.

6.1.1 Numerical experiments

The performance of POD/Galerkin ROMs constructed in the Lyapunov inner product is now eval-
uated on two examples: the international space station problem, and the electrostatically actuated
beam problem, introduced at the beginning of this chapter.

International space station (ISS) test case

To generate the snapshots from which the POD bases are constructed, the full order model is
solved using a backward Euler time integration scheme with an initial condition ofxN(0) = 0 and
uP(t) = (1×104)δt=0. That is, at timet = 0, an impulse of magnitude 1×104 is applied. A total
of Kmax = 2000 snapshots are collected, every∆tsnap= 5×10−5 seconds, until timeTmax = 0.1
seconds. These snapshots are used to construct POD bases of sizesM = 5, 10, 20, 30, and 40. For
eachM, a POD basis is computed using theL2 inner product, as well as the Lyapunov inner product
(6.10). The matrixP defining the inner product (6.10) is obtained using thelyap function in
MATLAB’s control toolbox withQ = IN, theN×N identity matrix (Section 6.1). The POD ROM
solutions are compared with solutions obtained by reducingthe system using balanced truncation
[73, 42]. First, the eigenvalues of the ROM matrixAM for eachM are computed to determine
stability using Theorem 3.2.3. The maximum real part of the eigenvalues of these ROM system
matrices is plotted in Figure 6.2 as a function ofM. The reader can observe that the Lyapunov
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Figure 6.2. Maximum real part of eigenvalues of ROM system
matrix AM for ISS problem

inner product POD ROMs and balanced truncation ROMs are stable for all M considered – all the
real parts of the eigenvalues of these systems’ matrices are≤ 0. In contrast, theL2 POD ROMs are
unstable for allM.
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Having checked stability, each ROM is run until a specified timeTmax, and the average error in the
output relative to the full order model (6.1) is computed. The relative errors (6.1) in the output for
ROMs of different sizes run up to different values ofTmax are summarized in Table 6.1. In the case
a ROM went unstable and (6.1) overflowed, the table contains an entry of ‘−’.

The objective of theKmax = 2000 (Tmax = 0.1 seconds) run is to test how well the POD bases
can reproduce the snapshots from which they were constructed, as exactlyKmax= 2000 snapshots
(taken up toTmax= 0.1 seconds) were used to generate these bases. Although theL2 POD ROM is
unstable for all values ofM considered (Figure 6.2), this ROM still produces a reasonable solution
for M = 5 andM = 10 (Figure 6.3(a) and Table 6.1). The instability manifestsitself if a larger basis
size is used, however. The Lyapunov ROM remains stable and accurate – orders of magnitude more
accurate than the balanced truncation ROM for eachM considered (Table 6.1).

The objective of theKmax= 5000 (Tmax= 0.25 seconds) andKmax= 10,000 (Tmax= 0.5 seconds)
runs is to test the predictive capabilities of the POD ROMs relative to the balanced truncation
ROMs for long-time simulations. The reduced order models are run for a much longer time horizon
than the run used to generate the POD bases employed in building the ROMs. ForKmax= 5000,
The L2 POD ROM exhibits an instability for allM considered exceptM = 10. For this value of
M, the balanced truncation ROM and Lyapunov POD ROM are more accurate than theL2 POD
ROM, however (Figure 6.3(b) and Table 6.1). ForKmax= 10,000, theL2 POD ROM is unstable
for all M considered. This instability is apparent in Figure 6.3(c).Hence, the instability identified
in the earlier eigenvalue analysis (Figure 6.2) manifests itself if theL2 POD ROM is run for a long
enough time. ForKmax = 5000 andKmax = 10,000, the Lyapunov POD ROM is more accurate
than the balanced truncation ROM for smallM. However, its accuracy is limited, as there does not
appear to be a convergence withM-refinement.

Table 6.1. Relative errors (6.1)Erel,y in ROM output for ISS
problem

M
Kmax Method 5 10 20 30 40

2000
Balanced truncation 9.80×10−2 6.39×10−2 9.56×10−3 2.34×10−3 8.34×10−4

PODL2 1.09×10−4 3.14×10−7 − − −
POD LyapunovP 8.69×10−6 4.05×10−7 1.13×10−6 8.44×10−7 9.22×10−7

5000
Balanced truncation 7.64×10−2 4.68×10−2 8.14×10−3 1.87×10−3 5.58×10−4

PODL2 2.41 4.73×10−2 − − −
POD LyapunovP 2.88×10−2 5.24×10−3 1.31×10−2 1.21×10−2 2.86×10−2

10,000
Balanced truncation 6.87×10−2 4.47×10−2 7.08×10−3 1.78×10−3 5.76×10−4

PODL2 165 3.24 − − −
POD LyapunovP 5.25×10−2 6.46×10−2 9.92×10−2 1.08×10−1 9.92×10−2
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(c) Kmax= 10,000

Figure 6.3.yQM(t) for M = 10 ROMs (FOM = full order model)
for ISS problem

Electrostatically actuated beam test case

To generate the snapshots from which several POD bases are constructed for the electrostatically
actuated beam example, the full order model (4.18) is solvedusing a backward Euler time integra-
tion scheme with an initial condition ofxN(0) = 0 and an input corresponding to a periodic on/off
switching, i.e.,

uP(t) =







0.005< t < 0.01,0.015< t < 0.02,
1, 0.03< t < 0.035,
0, otherwise

(6.14)

A total of Kmax = 1000 snapshots are collected, every∆tsnap= 5× 10−5 seconds, until time
Tmax= 0.05 seconds. From these snapshots, 5, 10, 20 and 30 mode ROMs are constructed using
POD in theL2 inner product, and POD in the Lyapunov inner product. In solving the Lyapunov
equation (6.9) for the Lyapunov inner product weighting matrix P, the matrixQ is taken to be the
N×N identity matrix. The system (4.18) is reduced also using balanced truncation.

As for the ISS example, the first step is to study the stabilityof each ROM. Figure 6.4 shows the
maximum real part of the ROM system matricesAM for eachM considered. It is found that the
L2 ROM is unstable for eachM, and becomes more unstable with increasingM. In contrast, the
balanced truncation and POD Lyapunov inner product ROMs arestable for allM considered, as
expected.

Next, the accuracy of each ROM is examined. Table 6.2 summarizes the errors (6.1) in the ROM
solutions relative to the full order model solution for three runs of different lengths. As before, an
entry of ‘−’ in the table indicates that the error overflowed due to an instability in the ROM.

The objective of the first run (Kmax= 1000) is to study how well the POD ROMs can reproduce
the snapshots from which they were constructed, and to compare these ROMs’ performance with
the performance of ROMs constructed using balanced truncation. The reader can observe that the
POD ROM constructed in the Lyapunov inner product is the mostaccurate. The PODL2 ROM is
both unstable as well as inaccurate (Figure 6.5(a)).

The second two runs (Kmax= 2000 andKmax= 5000) are aimed to study the predictive capabilities
of the ROMs for long-time simulations. The full order model is run until times 0.1 and 2.5 seconds
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respectively. As before, only snapshots up to timet = 0.05 seconds are used to construct the POD
bases for the ROMs. In addition to the signal (6.35), the following inputs are applied in both the
full order model and the ROM:

uP(t) =































0.055< t < 0.06,0.065< t < 0.07,
0.08< t < 0.085,0.105< t < 0.11,
0.115< t < 0.12,0.13< t < 0.135,
0.205< t < 0.21,0.215< t < 0.22,

1, 0.23< t < 0.235,
0, otherwise.

(6.15)

The reader may observe by examining Table 6.2 and Figure 6.5 that the balanced truncation ROMs
are in general the most accurate. The POD ROMs constructed inthe Lyapunov inner product
nonetheless produce reasonable results (Figures 6.5(b)-(c)) and appear to be converging to the full
order model solution withM-refinement (Table 6.2). The PODL2 ROM result is not shown in
Figures 6.5(b)-(c), as the solution produced by this ROM blows up around timet = 0.02 seconds.

Table 6.2. Relative errors (6.1)Erel,y in ROM output for electro-
statically actuated beam problem

M
Kmax Method 5 10 20 30

1000
Balanced truncation 6.29×10−2 4.51×10−3 6.93×10−5 3.60×10−6

PODL2 8.56×10−1 6.62 − −
POD LyapunovP 2.05×10−3 6.23×10−5 2.09×10−8 1.35×10−8

2000
Balanced truncation 5.84×10−2 4.47×10−3 6.29×10−5 3.17×10−6

PODL2 7.76 4.26×103 − −
POD LyapunovP 3.62×10−2 1.12×10−2 3.47×10−4 4.13×10−5

5000
Balanced truncation 7.36×10−2 4.77×10−3 5.48×10−5 2.77×10−6

PODL2 4.40×103 − − −
POD LyapunovP 1.80×10−1 1.09×10−1 2.03×10−2 6.09×10−3

Lastly, the level of computational resources required for computing the Lyapunov inner product
and the level of computational resources required for performing model reduction via balanced
truncation [73, 42] are compared. Table 6.3 gives the CPU times for the sum of the following
operations in the balanced truncation [73, 42] algorithm asa function ofN, the problem size: cal-
culation of the observability Gramian, calculation of the controllability Gramian, and calculation
of the balancing transformation (Appendix A.8). All computations are performed in serial using
MATLAB’s linear algebra capabilities and MATLAB’s controltoolbox [2], on a Linux workstation
with 6 Intel Xeon 2.93 GHz CPUs. Both methods exhibitO(N3) scaling. Although the Lyapunov
inner product computation is costly, as it requires the solution of a Lyapunov equation, it com-
pletes in 2-3 times less CPU time than the balanced truncation algorithm. This is because balanced
truncation requires the solution oftwo Lyapunov equations for the observability and reachability
Gramians, as well as the Cholesky and eigenvalue factorizations of these Gramians.

87



5 10 15 20 25 30
−500

0

500

1000

1500

2000

2500

3000

3500

M

M
ax

im
um

 R
ea

l P
ar

t o
f e

ig
(A

M
)

 

 

BT

POD L2

POD Lyapunov P

Figure 6.4. Maximum real part of eigenvalues of ROM system
matrix AM for electrostatically actuated beam problem

Table 6.3. CPU times (in seconds) for balanced truncation vs.
Lyapunov inner product computations (electrostatically actuated
beam problem)

N
Method 1250 2500 5000 10,000

Lyapunov Inner Product 5.08×101 4.60×102 4.02×103 6.09×104

Balanced Truncation 1.09×102 1.10×103 1.04×104 1.24×105

6.2 ROM stabilization via optimization-based eigenvalue reas-
signment

In this section, twonewalgorithms for stabilizing LTI systems of the form (4.18) bymodifying
the unstable eigenvalues ofAM through a “black-box” post-processing step applied to the given
(unstable) ROM system are proposed. These algorithms were developed as a part of the LDRD
project summarized in this report. It will be assumed from this point onward that the matrixA
defining the FOM system (4.18) is stable. Algorithm 2 is the primary contribution of this report.
Algorithm 1 is provided, as it served as a strategic foundation for the final development (Algorithm
2). It is given here not only for the sake of completeness, butalso because it is shown in Section
6.2.3 that Algorithm 2 can be seen as a variant of Algorithm 1.

6.2.1 Algorithm 1: ROM stabilization via full state feedback (a.k.a. pole
placement)

The first ROM stabilization algorithm is motivated by the observation that (4.20) is an LTI system,
and, as such, can be stabilized using full state feedback, orpole placement, methods from control
theory [11, 96]. The general approach of stabilizing an LTI system using full state feedback is
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Figure 6.5.yQM(t) for M = 10 ROMs (FOM = full order model)
for electrostatically actuated beam problem

reviewed below.

Consider the open loop ROM LTI system (4.20), where it is assumedu(t) is given, so thatBMu(t)
represents, for instance, a given source for the equations.The objective of full state feedback (pole
placement) is to redesign the dynamics of the system (4.20) through feedback of the state. IfAM is
unstable, it is desired to redesign the system such that it isstable. Towards this end, the open-loop
system (4.20) is transformed into a closed-loop system, anda feedback controller that positions
the closed loop eigenvalues of the system is developed. The first step is to select a control matrix
BC ∈ RM×J for some integerJ, and modify the system (4.20) by adding to it the controlBCuC(t):

ẋM(t) = AMxM(t)+BMu(t)+BCuC(t)
yM(t) = CMxM(t).

(6.16)

Here,uC(t) ∈ RJ is a control that will be designed to modify the dynamics of the original system
(4.20) such that it is stable. For an LTI system representingsome physical dynamics,BC is typically
selected to represent a physical control that can be imposedon the system, e.g., actuation applied
to a boundary of a fluid domain. Next, a linear control law of the form uC(t) = −KCxM(t) is
assumed, whereKC ∈ RJ×M is the control matrix, to be determined. Substituting this law into
(6.16) and rearranging, the following is obtained:

ẋM(t) = (AM−BCKC)xM(t)+BMu(t)
yM(t) = CMxM(t).

(6.17)
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The system (6.17) is a system of the form (4.20) but withAM replaced byÃM, where

ÃM ≡ AM−BCKC. (6.18)

The reader can observe that if it is possible to compute the control matrix KC such thatÃM is
stable, the ROM system (6.16) will be stable.

In order to formulate a well-posed ROM stabilization algorithm based on the approach outlined
above, a number of questions need to be addressed:

(i) How should the control matrixBC be selected? Typically, when applying pole placement
algorithms, aphysicalsystem is stabilized using aphysicalcontroller. In this case, the
controller matrixBC is added at the level of the algebraic system (6.16). In this context,
what doesBC mean? What should it mean?

(ii) What eigenvalues should the stabilized ROM matrixÃM (6.18) be prescribed to have? It is
clear that the eigenvalues should lie in the stable half of the complex plane, but what physical
values should they have?

(iii) Does the solutionKC to the pole placement problem exist?

(iv) How has the stabilization affected the accuracy of the ROM? By modifying the ROM system
(4.20), inconsistencies between the FOM and ROM physics have been introduced.

In this subsection, only question 3, the existence question, will be addressed. Answering this
question gives rise to a preliminary ROM stabilization algorithm, referred to as “Algorithm 1”.
The remaining questions are addressed through the formulation of “Algorithm 2”, described in
Section 6.2.2.

Before formulating an algorithm which guarantees the existence of the solution to the pole place-
ment problem described above, it is useful to recall the following theorem.

Theorem 6.2.1(quoted from [11]): If the pair(AM,BC) is controllable2, there exists a feedback
uC(t) =−KCxM such that the eigenvalues ofÃM (6.18) can be arbitrarily assigned.

In general, the pair(AM,BC) may not be controllable. However, it is possible to apply Theorem
6.2.1 by working in the controllable and observable3 subspaces ofAM and BC, which can be
isolated through the Kalman decomposition. A detailed discussion of the Kalman decomposition

2An LTI system (4.18) is controllable (a.k.a. reachable) if for anyx0,x f ∈RN, there exists aT > 0 andu : [0,T]→R

such that the corresponding solution satisfiesx(0) = x0 andx(T) = x f [11, 96]. To test for controllability of a linear
system, it is sufficient to check the rank of the controllability matrix

Wc≡
(

B, AB, · · · , AN−1B
)

. (6.19)

The LTI system (4.18) is controllable if and only if the controllability matrix (6.19) is invertible [96, 11].
3An LTI system (4.18) is observable if for anyT > 0 it is possible to determine the state of the systemx(T) through

measurements ofy(t) andu(t) on the interval[0,T] [11, 96]. To test for observability of a linear system, it is sufficient
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can be found in classical control theory texts, e.g., [11, 96]. The key result of the Kalman theorem
is that the state space can be decomposed into four parts: a part that is reachable and observable, a
part that is reachable but not observable, a part that is not reachable but observable and a part that
is neither reachable nor observable. The procedure is summarized in Algorithm 1.

Algorithm 1
• Pick a control matrixBC, e.g.,BC = 1M.
• GivenBC, use the Kalman decomposition to isolate the controllable and observable parts of
AM andBC, call themAco

M = UAMUT andBco
C = UBC respectively.

• Compute the eigenvaluesλ co
1 , ...,λ co

Mco of Aco
M .

• Reassign the unstable eigenvalues ofAco
M to make them stable, e.g., fork = 1 to Mco, set

λk = min{Re(λ co
k ),−Re(λ co

k )}+ i · Im(λ co
k ), (6.21)

whereRe(z) and Im(z) denote respectively the real and imaginary parts of a complex number
z∈C, andi ≡

√
−1.

• ComputeKC such thatAco
M −KCBco

C has these eigenvalues using full state feedback (a.k.a pole
placement) algorithms from control theory.
• SetAM = UT(Aco

M −KCBco
C )U.

Typically in full state feedback, the matrixBC represents a physical control that would be applied
to a physical system of the form (4.20) so as to stabilize thissystem. The situation of interest
here is not entirely comparable, as it has been assumed that thephysicalsystem underlying (4.20)
is stable (and hence does not need stabilization via full statefeedback); it is thealgebraicROM
system (4.20) that is unstable, and hence the matrixBC is added to the system at the algebraic
level. This scenario complicates the interpretation of (and therefore the choice of)BC. In general,
it can be argued that the choice ofBC does not matter provided the unstable eigenvalues ofAM are
controllable and observable given the choice ofBC. In the numerical example studied below,BC

is selected to be a vector of all ones.

It remains to provide some discussion of approaches for selecting the eigenvalues of the stabilized
matrix ÃM. One possible choice is to replace the real parts of the unstable eigenvalues ofAM with
their negatives (6.21), or some negative scaled multiple ofthese values. Another option is to try to
match the eigenvalues of the stabilized ROM matrixÃM with the eigenvalues of the FOM matrix
A (provided the computational resources to compute the FOM eigenvalues are available, which
may not be the case for very large systems). In general, the eigenvalues of a stable ROM will lie
on or near the manifold of the eigenvalues of the FOM from which the ROM was constructed.
This is illustrated in Figure 6.6, which shows the eigenvalue manifold of the FOM matrixA and
a ROM matrixAM for anM = 20 mode ROM constructed via balanced truncation [73, 42] fora
variant of the international space station benchmark. In fact, if M = N in a ROM, that is, a ROM

to check the rank of the observability matrix

WT
o ≡

(

C, CA, · · · , CAN−1
)

. (6.20)

The LTI system (4.18) is observable if and only if the observability matrix (6.20) is full rank [11, 96].
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is constructed with a full basis of the spaceR
N, AM ∼ A (as can be seen from (4.21)), so thatAM

will have the same eigenvalues asA.
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Figure 6.6. Eigenvalue manifold of FOM matrixA and ROM
matrix AM for an M = 20 mode ROM constructed via balanced
truncation for a variant of the ISS benchmark

6.2.2 Algorithm 2: ROM stabilization through solution of constrained non-
linear least squares optimization problem

The primary downside of Algorithm 1 (Section 6.2.1) is it is uncleara priori how a particular
choice of the control matrixBC and stabilized eigenvalues will affect the accuracy of the result-
ing stabilized ROM. This problem is remedied in the present section through the development of
a new algorithm, “Algorithm 2”. In this algorithm, the eigenvalues of the stabilized matrix̃AM

are determined such that the ROM output solution deviates minimally from the FOM output solu-
tion. Hence, questions 2 and 4 in Section 6.2.1 are addressedexplicitly. As will be clear shortly,
Algorithm 2 does not require the selection of a control matrix BC (question 1).

Consider the ROM LTI system (4.20). Note that it is possible to work out analytically in closed
form the exact solution to this system. The reader may verifythat the solution to this system is
given by

xM(t) = exp(tAM)xM(0)+

∫ t

0
exp{(t− τ)AM}BMu(τ)dτ. (6.22)

In equation (6.22), exp(·) denotes the matrix exponential. It is worthwhile to note that this quantity
is not an issue to compute, as the ROM system matrixAM is small. Given the solution for the
ROM state vector (6.22), the ROM output is given by

yM(t) = CM

[

exp(tAM)xM(0)+
∫ t

0
exp{(t− τ)AM}BMu(τ)dτ

]

. (6.23)
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The existence of an analytical solution to the ROM LTI system(4.20) motivates the formulation of
the following optimization problem, to be solved for the eigenvalues of the stabilized ROM system:

min
λ u

i

K

∑
k=1
||yk−yk

M||22.

s.t. Re(λ u
i ) < 0, i = 1, ...,L

(6.24)

The optimization is over the unstable eigenvalues of the original ROM system matrixAM, denoted
by λ u

i , for i = 1, ..,L whereL ≤M is the number of unstable eigenvalues ofAM. The shorthand
yk denotes the FOM output at timetk, i.e., yk ≡ y(tk). In a model reduction approach based on
an empirical basis computed from a set of snapshots of the high-fidelity solution, e.g., the POD
or BPOD method, these values are available at the snapshot times. The shorthandyk

M denotes the
ROM output at timetk, i.e., yK

M ≡ yM(tk). It is given by the formula (6.23). The constraint in
(6.24) ensures that the stabilized ROM eigenvalues are in the stable half of the complex plane Here
Re(z) denotes the real part of a complex numberz∈ C. Equation (6.24) is a constrained nonlinear
least-squares optimization problem with inequality constraints.

Remark that the optimization problem (6.24) is small: thereare at mostM dofs, and solving the
problem does not require operating on any matrices that are of sizeO(N). This optimization prob-
lem can be solved using standard algorithms for constrainedoptimization, e.g., an SQP algorithm
with line search globalization, BFGS for Hessian approximations, and an interior point method to
handle the inequality constraints [77].

An interesting question that arises is whether the solutionto the optimization problem (6.24) is
unique. A sufficient condition for a minimization problem ofthe form

min
x

f (x), (6.25)

wherex ∈ Rn is a real vector andf : Rn→ R is a smooth function, to have a unique solution is
for f to be convex [77]. In this case, any stationary point off is a global minimizer off , and
hence a local minimizer off will be the global minimizer off . It is straightforward to show that
the objective function in (6.24) is not necessarily convex.Since convexity is a sufficient but not a
necessary condition for uniqueness of the solution to (6.24), the optimization problem could have
a unique solution, but this scenario is not guaranteed. The numerical tests performed in Section
6.2.4 suggest that the optimization problem (6.24) has in general multiple solutions.

It turns out that it is convenient to implement and solve the optimization problem (6.24) in the
“characteristic variables”, defined byzM(t) = S−1

M xM(t), whereS−1
M is the matrix that diagonal-

izesAM, i.e., AM = SMDMS−1
M . The steps of the stabilization are detailed in Algorithm 2.Note

that, although it is assumed hereAM is diagonalizable, the extension to non-diagonalizableAM is
straightforward. In this case, the eigenvalue decomposition in Algorithm 2 (6.26) is replaced with
the Jordan decomposition.
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Algorithm 2
• Diagonalize the ROM matrixAM:

AM = SMDMS−1
M . (6.26)

• Initialize a diagonalM×M matrix D̃M.
• Set j = 1.
• for i = 1 to M

if Re(DM(i, i)) < 0
SetD̃M(i, i) = DM(i, i).

else
SetD̃M(i, i) = λ u

j .
endif

endfor
• Incrementj← j +1.
• Solve the optimization problem (6.24) for the eigenvalues{λ u

j } with yM(t) given by

yM(t) = CM

[

SM exp(tD̃M)S−1
M xM(0)+

∫ t

0
SM exp{(t− τ)D̃M}S−1

M BMu(τ)dτ
]

, (6.27)

using an optimization algorithm.
• EvaluateD̃M at the solution of the optimization problem (6.24).
• The stabilized LTI ROM system is now given by

ẋM(t) = ÃMxM(t)+BMu(t)
yM(t) = CMxM(t),

(6.28)

whereÃM = SMD̃MS−1
M .

6.2.3 Connection between Algorithm 1 and Algorithm 2

One notable difference between Algorithms 1 and 2 is that, unlike the former algorithm, the latter
algorithm does not employ directly full state feedback (a.k.a. pole placement) routines from control
theory to solve for the stabilized ROM matrix̃AM. However, it turns out that it is possible to show
that Algorithm 2 is equivalent to Algorithm 1 for a specific choice of control matricesBC andKC.

SupposeAM hasL ≤M unstable eigenvaluesλ u
k , each with corresponding eigenvectorsu

k. Let λ̃ u
k

denote the stabilized value ofλ u
k , obtained by solving the optimization problem (6.24). The reader

can verify thatÃM in (6.28) is equivalent to

ÃM = AM−BCKC, (6.29)

where

BC =
(

su
1, · · · , su

L

)

∈ R
M×L (6.30)
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KC =











λ u
1 − λ̃ u

1 0 0 · · · 0
0 λ u

2 − λ̃ u
2 0 · · · 0

...
...

...
...

...
0 0 0 λ u

L − λ̃ u
L 0











S−1
M ∈R

L×M. (6.31)

6.2.4 Numerical experiments

The performance of the ROM stabilization algorithms described in this section is now assessed
on the two benchmarks considered in this chapter: the ISS benchmark, and the electrostatically
actuated beam benchmark, both introduced earlier.

Typically, the size of a reduced POD basis, namelyM, is calculated using the energy criterion
(4.6). That is,M is selected such that the reduced basisΦΦΦM captures some fixed percentage of the
snapshot energy, e.g., 95% or 99% (see [71, 50]). For the problems considered here,M is chosen to
be the smallest integer such that: (1) the basisΦΦΦM captures at least 99% of the snapshot energy, (2)
the resulting POD/Galerkin ROM has at least one unstable eigenvalue, and (3) the POD/Galerkin
ROM goes unstable during the time horizon considered. This strategy of choosingM is a natural
one given the objective of this chapter: to evaluate the ROM stabilization algorithms developed in
this section.

For the ISS example the performance of Algorithm 1 and the performance of Algorithm 2 are
evaluated. This comparison is intended to highlight the superiority of Algorithm 2 over Algorithm
1. For the sake of brevity, results for only Algorithm 2 (established in the context of the ISS
example as the superior algorithm) are shown for the electrostatically actuated beam example.

To solve the constrained nonlinear least squares optimization at the heart of Algorithm 2 (6.24),
thefmincon function in the MATLAB optimization toolbox [1, 77] is employed. TheAlgorithm
option required by this function is set tointerior-point with exact (analytic) Jacobians. An
analytic expression for the Jacobian of the objective function for the specific case ofu(t) = 0
and one output of interest in (6.24) can be found in Appendix A.9. Deriving and implementing
an analytic Jacobian is recommended over using finite difference Jacobians calculated within the
MATLAB optimization toolbox. Since analytic Jacobians areexact, they are accurate. In contrast,
finite difference Jacobians can be inaccurate for some problems as a result of an arbitrary selection
of the finite difference increment. Moreover, the solution of the optimization problem (6.24) is
much faster with exact Jacobian due to fewer required function evaluations. With exact Jacobians,
the number of function evaluations per optimization step isconstant. In particular, it does not grow
with L, the number of eigenvalues reassigned by the optimization algorithm. The defaultfmincon
settings for this method are used, which can be found in [1].

Note that thefmincon function will compute only real solutions to an optimization problem. In
general the eigenvalues of the matrixAM may be complex, however. To allow thefmincon al-
gorithm to compute complex eigenvalue solutions of the ROM stabilization optimization problem
(6.24), a complex-valued functional form forλ u

j may be assumed. In this approach,λ u
j in line 9 of
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Algorithm 2 is replaced with

λ u
j ← λ ur

j + i ·λ uc
j ∈ C, λ ur

j ,λ uc
j ∈ R, (6.32)

(wherei ≡
√
−1) and (6.24) is solved forλ ur

j ,λ uc
j ∈R subject to the constraint thatλ ur

j < 0. Since
complex eigenvalues ofAM occur in complex-conjugate pairs, ifλ u

j has the form (6.32), thenλ j+1

in Algorithm 2 must have the form

λ u
j+1 = λ ur

j+1− i ·λ uc
j+1 ∈C, λ ur

j+1,λ
uc
j+1 ∈ R. (6.33)

It follows that the approach of assuming complex-conjugatepair solutions to (6.24) does not give
rise to more dofs than the default approach of solving for real solutions to this problem. In fact,
the former approach has fewer constraints.

The numerical results section includes comparisons of the following CPU times for both problems
considered:

• The CPU time required for the time-integration of the FOM.

• The CPU time required for the offline (snapshot collection, loading of system matrices/snaptions,
calculation of the POD basis, Galerkin projection, and numerical solution of the optimization
problem (6.24)) stage of the POD/Galerkin ROMs.

• The CPU time required for the online (time-integration) stage of the POD/Galerkin ROMs.

All computations are performed in serial using MATLAB’s linear algebra capabilities on a Linux
workstation with 6 Intel Xeon 2.93 GHz CPUs. Note that the FOMCPU times do not include
the time to discretize the relevant PDEs using the finite element method and assemble the global
system matrix. This is due to the fact that the matrices defining the FOM were downloaded from
a model reduction benchmark repository, and access to the high-fidelity code that generated these
matrices is not available to the authors.

In general, ROMs are employed for many-query and/or real-time analysis. In these contexts, it is
critical that the online time-integration stage of the ROM has a low computational cost and fast run-
time. Although the offline construction of the reduced ordermodel, which includes the collection
of snapshots, the construction of the POD basis, the Galerkin projection, and the solution of the
optimization problem (6.24), can be computationally intensive, this step is done onlyone time
when the ROM is constructed. The cost of this computation does not affect the run-time of the
online step of the model reduction, the step relevant to analysis using the ROM. Nonetheless, it
may be of interest how many times the ROM would need to be run (online) to compensate the
cost of the (offline) pre-processing step. For this reason, estimates of the number of online ROM
runs that would be required to offset the offline ROM cost are given for each example considered
following the CPU time data (Tables 6.8 and 6.12).
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International space station (ISS) test case

As before (Section 6.1.1), to generate the snapshots from which the POD bases are constructed,
the full order model (4.18) is solved using a backward Euler time integration scheme with an
initial condition of xN(0) = 1N (N× 1 vector of all ones) and no input(u(t) = 0). A total of
Kmax= 2000 snapshots are collected, every∆tsnap= 5×10−5, until timeTmax= 0.1 seconds. These
snapshots are used to compute a POD basis of sizeM = 20, and a POD/Galerkin ROM of size
M = 20 is constructed using this basis. For this problem, theM = 20 mode POD/Galerkin ROM
is found to be unstable with four unstable eigenvalues. Thisbasis captures essentially 100% of the
snapshot energy, and the valueM = 20 is the smallest basis size such that the ROM exhibits an
instability. The numerical values of the unstable eigenvalues are:λ u

1 = 242.5,λ u
2 = 32.90+26.99i,

λ u
3 = 32.90−26.99i, λ u

4 = 2.712. Figure 6.7 shows the FOM outputy(t) (in red) compared to the
unstabilized ROM output (in blue). The unstabilized ROM output diverges from the FOM output
around timet = 0.05 and approaches−∞ ast→ ∞ due to the ROM instability. The relative error
Erel,y in the unstabilized ROM output (6.1) is 1737.9.

TheM = 20 mode POD/Galerkin ROM for the ISS problem is stabilized first by Algorithm 1, then
by Algorithm 2. These results illustrate the superiority ofAlgorithm 2 over Algorithm 1.

Stabilization via Algorithm 1

First, theM = 20 mode unstable POD/Galerkin ROM is stabilized using Algorithm 1 with the
control matrixBC selected to be anM× 1 vector of all ones:BC = 1M. The next step in the
stabilization is to select the desired eigenvalues of the stabilized ROM matrixÃM. Let λ u

k for k =

1, ...,4 denote the unstable eigenvalues forAM, and letλ̃ u
k denotes the corresponding eigenvalues of

ÃM (that is, the valuesλ u
k will be replaced within the stabilization algorithm). Here, the following
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functional form forλ̃ u
k will be considered:

λ̃ u
k =−α ·Re(λ u

k )+ i · Im(λ u
k ), α > 0, (6.34)

for k = 1, ...,4, whereRe(z) andIm(z) denote respectively the real and imaginary parts of a com-
plex numberz∈ C and i ≡

√
−1. The transformation (6.34) flips the sign of the real part ofan

unstable eigenvalue ofAM (thereby making it stable), and scales this value by a positive constant
α. Three choices of the parameterα in (6.34) will be tested here:

• α = 0.1.

• α = 1.

• α = 10.

The objective is to study the error in the stabilized ROM for several choices of̃λ u
i . The choices

are admittedly ad hoc, as there is no clear guideline for whatthe eigenvalues of̃AM should be.
Note that asα is increased, the eigenvaluesλ̃ u

k are pushed further into the left (stable) half of the
complex plane.

Figure 6.8 shows the outputs computed by the three stabilized ROMs obtained using Algorithm
1. The relative errors in the stabilized ROM outputs are given in Table 6.4. All three ROMs are
stable (by construction). The ROM stabilized by Algorithm 1with α = 1 is slightly more accurate
than the ROM stabilized by Algorithm 1 withα = 0.1. This may lead the reader to conjecture that
the accuracy of the stabilized ROM will improve as the eigenvalues are pushed further and further
into the left half of the complex plane. However, the ROM stabilized by Algorithm 1 withα = 10
results demonstrate that this is not the case: the ROM with its eigenvalues pushed the most into the
left half of the complex plane is the least accurate.
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Figure 6.8. Outputs forM = 20 POD/Galerkin ROMs stabilized
via Algorithm 1 vs. FOM output for ISS problem
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Table 6.4.Relative errors inM = 20 POD/Galerkin ROM for ISS
problem stabilized via Algorithm 1

ROM Erel,y
Unstabilized 1737.8

ROM stabilized via Algorithm 1 withα = 0.1 1.51×10−2

ROM stabilized via Algorithm 1 withα = 1 1.16×10−2

ROM stabilized via Algorithm 1 withα = 10 2.26×10−2

The numerical results presented here show that Algorithm 1 works in the sense that it will stabilize
an unstable ROM. Unfortunately, the accuracy of a ROM stabilized using this algorithm is in
general unknown before the ROM is stabilized and the ROM output is computed. Moreover, for
some choices of̃λ u

i the accuracy may be unacceptable.

Stabilization via Algorithm 2

TheM = 20 POD/Galerkin ROM for the ISS benchmark is now stabilized using Algorithm 2. Let
λ u

k for k = 1, ...,4 denote the four unstable eigenvalues ofAM. Two options for the eigenvalue
solutions to the optimization problem (6.24) are considered:

• Option 1:Solve forλ u
i ∈ R subject to the constraint thatλ u

i < 0 for i = 1, ...,4.

• Option 2: Solve for λ1,λ ur
2 ,λ uc

2 ,λ4 ∈ R subject to the constraint thatλ1,λ ur
2 ,λ4 < 0 and

setλ u
2 = λ ur

2 + iλ uc
2 , λ u

3 = λ ur
2 − iλ uc

2 (that is,λ u
3 is set to be the complex-conjugate ofλ u

2 :
λ u

3 = λ̄2
u
).

Per the discussion at the beginning of Section 6.2.4, Option2 is more general than Option 1 and
has fewer inequality constraints. The optimization problem (6.24) at the heart of Algorithm 2 is
solved using thefmincon function in MATLAB’s optimization toolbox. TheAlgorithm option
required by this function is set tointerior-point, and an initial guess of−1 for all the variables
is used. For functional forms of the eigenvalues given by both Option 1 and Option 2, the opti-
mization algorithm converges to a local minimum solution inless than 30 optimization iterations
and 30 function evaluations. Table 6.5 shows some key information about the convergence of the
optimization algorithm. The reader may observe that fewer iterations and function evaluations are
required with Option 2 than with Option 1, which has more constraints. Figures 6.9 and 6.10 illus-
trate further the performance of the optimization algorithm for Option 1 and Option 2 respectively.
For both options, the optimality conditions are satisfied tothe specified tolerance at the value of
the optimal solution4.

An interesting question that arises is how the numbers in Table 6.5 change withM, the reduced
basis size. Numerical experiments reveal that it is not necessarily the case that asM increases,

4For a constrained optimization problem such as (6.24), the first order optimality conditions require that the gradi-
ent of Lagrangian of the objective functionL(λ u

1 , ...,λ u
L ) be equal to zero, i.e.,∂L

∂λ u
k

= 0 for all k = 1, ...,L whereL < M

is the number of eigenvalues ofAM stabilized by Algorithm 2. A detailed discussion of this andother optimality
conditions for the problem (6.24) can be found in [1, 77].
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Table 6.5. Performance offmincon interior point method for
Algorithm 2 applied to ISS problem

Algorithm 2 Algorithm 2
with Option 1 (real with Option 2 (complex-

eigenvalues) conjugate eigenvalues)
# upper bound constraints 4 3
# optimization iterations 29 27
# function evaluations 30 30

first order optimality at convergence (|∇L|) 4.00×10−7 5.51×10−7
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Figure 6.9. Performance of interior point algorithm for Algo-
rithm 2 with Option 1 (real eigenvalues) as a function of iteration
number (ISS problem)
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Figure 6.10. Performance of interior point algorithm for Algo-
rithm 2 with Option 2 (complex-conjugate eigenvalues) as a func-
tion of iteration number (ISS problem)

more optimization iterations and function evaluations arerequired to obtain the solution to the op-
timization problem (6.24). The performance of the interiorpoint method depends on a number of
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factors, including: (1) the number of optimization dofs (i.e., the number of unstable eigenvalues
of a ROM), (2) the number of upper bound constraints, (3) the character of the objective function,
(4) the proximity of the initial guess to the optimal solution, and (5) the tolerances used in the
optimization algorithm; notM, the reduced basis size, directly. Some additional performance re-
sults of thefmincon interior point method for Algorithm 2 applied to the ISS problem for different
(larger) values ofM are given in Appendix A.10 (Tables A.3–A.4). For the ISS problem, the ROM
does in general become more unstable with increasingM, but more optimization iterations are not
always required (Table A.3).

The eigenvalue solutions to the optimization problem (6.24) with both Option 1 and Option 2 are
given in Table 6.6, compared with the values of the original unstable eigenvalues ofAM. It is
interesting to observe that the eigenvalues computed by theoptimization algorithm with Option
1 are very different in their numerical values than those computed by the optimization algorithm
with Option 2. Both are local minimizers of the optimizationfunction (6.24). As discussed in
Section 6.2.2, the optimization value is not guaranteed to be unique.

Table 6.6. Original (unstable) eigenvalues ofAM for M = 20
mode POD/Galerkin ROM and new stable eigenvalues computed
using Algorithm 2 (ISS problem)

Original UnstableAM

Algorithm 2 Algorithm 2
with Option 1 with Option 2

(real eigenvalues) (complex-conjugate eigenvalues)
λ u

1 2.42×102 −1.32 −1.98
λ u

2 3.29×101+2.70×101i −2.12×10−2 −6.47×10−3+1.42×101i
λ u

3 3.29×101−2.70×101i −2.13×10−2 −6.47×10−3−1.42×101i
λ u

4 2.71 −1.33×10−4 −1.38×10−4

Table 6.7 gives the error in the ROM algorithm relative to theFOM output for anM = 20 POD/Galerkin
ROM stabilized via Algorithm 2 with Option 1 and Option 2 for the ISS problem. Both options
give a ROM with a relative error between 2.5% and 2.6%. This is a significant improvement in
accuracy compared to the same ROM stabilized via Algorithm 1(Table 6.4). Most importantly,
in contrast to Algorithm 1, Algorithm 2 guarantees some level of accuracy in the stabilized ROM,
as it minimizes the error in the ROM output by construction. Recall that the accuracy of a ROM
stabilized via Algorithm 1 is unknowna priori, and it may require some trial and error to obtain a
stabilized ROM with an acceptable error (Section 6.2.4).

Figure 6.11 shows the output computed from ROMs stabilized using Algorithm 2. The reader may
observe that the stabilized ROM outputs are in much better agreement with the FOM output than
the ROMs stabilized using Algorithm 1 (Figure 6.8).

Table 6.8 summarizes the CPU times for the time-integrationstep of the FOM, in addition to the
CPU times for the offline and online stages of theM = 20 POD/Galerkin ISS ROM. The reader can
observe by examining Table 6.8 that theM = 20 online stage of the POD/Galerkin ROM requires
approximately 45 times less CPU time than the time-integration stage of the FOM. To offset the
total preprocess time of the ROM (the time required to run theFOM to collect snapshots, calculate
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Table 6.7.Relative errors inM = 20 POD/Galerkin ROM for ISS
problem stabilized via Algorithm 2

ROM Erel,y

Unstabilized 1.74×103

ROM stabilized via Algorithm 2
2.59×10−2

with Option 1 (real eigenvalues)
ROM stabilized via Algorithm 2

2.52×10−2
with Option 2 (complex-conjugate eigenvalues)
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Figure 6.11.Outputs forM = 20 POD/Galerkin ROMs stabilized
via Algorithm 2 vs. FOM output for ISS problem

the POD basis, perform the Galerkin projection, and solve the optimization problem (6.24)), the
ROM would need to be run approximately 53 times. It is worthwhile to note that the optimization
step of the model reduction, which consists of the solution of the optimization problem (6.24) is
very fast: it takes less than a minute to complete.

Electrostatically actuated beam test case

The second numerical example is that of the electrostatically actuated beam, detailed at the begin-
ning of this chapter. This example tests the performance of Algorithm 2 on a problem defined by a
dense matrixA and from a different application than the ISS example. The example also demon-
strates the methodology presented in this section on a larger-scale problem with has a forcing term
(BMu(t) 6= 0).

To generate the snapshots from which POD bases are constructed, the full order model (6.5) is
solved using a backward Euler time integration scheme with an initial condition ofz(0) = 0 and
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Table 6.8. Time-integration CPU times for ISS problem: FOM
vs. M = 20 POD/Galerkin ROM stabilized via Algorithm 2

Model Operations CPU time (sec)

FOM Time-Integration 1.71×102

ROM – offline stage

Snapshot collection (FOM time-integration) 1.71×102

Loading of matrices/snapshots 6.99×10−2

POD 6.20
Projection 8.18×10−3

Optimization∗ 2.28×101

ROM – online stage Time-Integration 3.77

∗Optimization times reported are means of the time required to solve (6.24) with real eigenvalues and the time

required to solve (6.24) with complex-conjugate eigenvalues.

an input corresponding to a periodic on/off switching, i.e.,

u(t) =

{

1, 0.005< t < 0.01,0.015< t < 0.02,0.03< t < 0.035
0, otherwise.

(6.35)

A total of Kmax= 1000 snapshots are collected, every∆tsnap= 5×10−5 seconds, until timeTmax=
0.05 seconds. From these snapshots, anM = 17 mode POD/Galerkin ROM is constructed. The
ROM is found to be unstable, with four unstable eigenvalues.These eigenvalues have the following
numerical values:λ u

1 = 16,053,λ u
2 = 48.985,λ u

3 = 12.650,λ u
4 = 0.05202. The basis sizeM = 17

is selected since this is the smallest integer for which the ROM exhibits an instability. It captures
effectively 100% of the snapshot energy. Figure 6.12 shows the FOM outputy(t) (in red) compared
to the unstabilized ROM output (in blue). The relative errorin the unstabilized ROM output (6.1)
evaluates toNaN (“not a number”) on a finite precision arithmetic machine dueto overflow caused
by the ROM instability. TheM = 17 mode POD/Galerkin ROM is stabilized by Algorithm 2.
Algorithm 1 is not considered for the sake of brevity, and since the superiority of Algorithm 2 has
been established already.

Stabilization via Algorithm 2

TheM = 17 POD/Galerkin ROM for the electrostatically actuated beam benchmark is stabilized
using Algorithm 2. The four unstable eigenvalues ofAM will be denoted byλ u

k for k = 1, ...,4.
Similarly to the ISS test case, two options for the eigenvalue solutions to the optimization problem
(6.24) will be considered:

• Option 1:Solve forλ u
i ∈ R subject to the constraint thatλ u

i < 0 for i = 1, ...,4.

• Option 2: Solve forλ ur
1 ,λ uc

1 ,λ ur
2 ,λ uc

2 ∈ R subject to the constraint thatλ ur
1 ,λ ur

2 ,< 0 and set
λ u

1 = λ ur
1 + iλ uc

1 , λ u
2 = λ ur

1 − iλ uc
1 , λ u

3 = λ ur
2 + iλ uc

2 , λ u
4 = λ ur

3 − iλ uc
3 (that is,λ u

3 is taken to
be the complex-conjugate ofλ u

2 : λ u
3 = λ̄2

u
).

Option 2 is more general than Option 1 and has fewer inequality constraints; however, Option 1
may be more consistent with the system dynamics, as the unstable eigenvalues ofA are all real. As
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Figure 6.12. Outputs forM = 17 unstabilized POD/Galerkin
ROM vs. FOM output for electrostatically actuated beam prob-
lem

before, thefmincon function in the MATLAB optimization toolbox will be used to solve the opti-
mization problem (6.24), with theAlgorithm option set tointerior-point and an initial guess
of −1 for all four variables optimized over in (6.24). For the functional form of the eigenvalues
assumed in Option 1, the algorithm converges in 60 optimization iterations, and requires 64 func-
tion evaluations. For the functional form of the eigenvalues assumed in Option 2, which has less
constraints than Option 1, fewer optimization iterations and function evaluations are required to
achieve convergence: 31 optimization iterations, and 32 function evaluations. Some key informa-
tion about the convergence of the optimization algorithm for both of these options is summarized
in Table 6.9, and Figures 6.13 and 6.14. For both options, theoptimality conditions are satisfied to
the specified tolerance at the value of the optimal solution.

Table 6.9. Performance offmincon interior point method for
Algorithm 2 applied to electrostatically actuated beam problem

Algorithm 2 Algorithm 2
with Option 1 (real with Option 2 (complex-

eigenvalues) conjugate eigenvalues)
# upper bound constraints 4 2
# optimization iterations 60 31
# function evaluations 64 32

first-order optimality at convergence(|∇L|) 2.27×10−7 8.43×10−7

Similarly to the ISS problem, Appendix A.10 (Tables A.5–A.6) gives some additional performance
results of thefmincon interior point method for Algorithm 2 for different (larger) values ofM.
ROMs with larger basis sizes possess in general more unstable eigenvalues, and more optimization
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Figure 6.13. Performance of interior point algorithm for Algo-
rithm 2 with Option 1 (real eigenvalues) as a function of iteration
number (electrostatically actuated beam problem)

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

Interation

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

Current Function Value: 1.23598

(a) Function value

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

Interation

F
irs

t−
or

de
r 

op
tim

al
ity

First−order Optimality: 8.43228e−07

(b) First order optimality (|∇L|)

Figure 6.14. Performance of interior point algorithm for Algo-
rithm 2 with Option 2 (complex-conjugate eigenvalues) as a func-
tion of iteration number (electrostatically actuated beamproblem)

iterations are required to obtain the solution of the optimization problem (6.24) using the interior
point method.

The solutions obtained by Algorithm 2 with both Option 1 and Option 2 are given in Table 6.10,
compared with the values of the original unstable eigenvalues ofAM. As for the ISS benchmark, the
eigenvalues computed by the optimization algorithm with Option 1 are different in their numerical
values from those computed by the optimization algorithm with Option 2. This suggests that the
optimization function (6.24) for this problem has multiplelocal minimizers/minima.

Table 6.11 gives the error in the ROM algorithm relative to the FOM output for anM = 20
POD/Galerkin ROM stabilized via Algorithm 2 with Option 1 and Option 2. For both options,
the relative error in the stabilized ROM output is approximately 2%.

Finally, Figure 6.15 shows the output computed from ROMs stabilized using Algorithm 2. There
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Table 6.10. Original (unstable) eigenvalues ofAM for M = 17
mode POD/Galerkin ROM and new stable eigenvalues computed
using Algorithm 2 (electrostatically actuated beam problem)

Original UnstableAM

Algorithm 2 Algorithm 2
with Option 1 with Option 2

λ u
1 1.61×104 −6.88×105 −1.16×105−2.25×104i

λ u
2 4.90×101 −3.54×102 −1.16×105+2.25×104i

λ u
3 1.27×101 −1.97×104 −3.32×103−1.81×102i

λ u
4 5.20×10−2 −1.40×104 −3.32×102+1.81×102i

Table 6.11. Relative errors inM = 17 POD/Galerkin ROM for
electrostatically actuated beam problem stabilized via Algorithm 2

ROM Erel,y

Unstabilized NaN
ROM stabilized via Algorithm 2

1.94×10−2
with Option 1 (real eigenvalues)
ROM stabilized via Algorithm 2

2.02×10−2
with Option 2 (complex-conjugate eigenvalues)

is good agreement between the FOM output and stabilized ROM outputs.
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Figure 6.15. Outputs forM = 17 POD/Galerkin ROMs stabi-
lized via Algorithm 2 vs. FOM output for electrostatically actuated
beam problem

Table 6.12 summarizes some CPU times for the electrostatically-actuated beam problem: the CPU
times for the FOM, as well as the CPU times for the offline and online stages of theM = 17
POD/Galerkin electrostatically-actuated beam ROM. The results in this table reveal that the online
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stage of the model reduction, the stage relevant to real-time calculations involving the ROM, took
only 6.78 seconds, compared to 7.10×104 seconds for the time-integration stage of the FOM. To
offset the total preprocess time of the ROM (the time required to run the FOM to collect snapshots,
calculate the POD basis, perform the Galerkin projection, and solve the optimization problem
(6.24)), the ROM would need to be run approximately 1×104 times. This large number of online
ROM runs required to offset the offline ROM cost is due to the large CPU time associated with the
FOM run for this large dense problem. As for the ISS problem, the optimization step of the model
reduction does not contribute significantly to the CPU time of the offline stage of the ROM, taking
just 1.5 minutes.

Table 6.12.Time-integration CPU times for electrostatically ac-
tuated beam problem: FOM vs.M = 17 POD/Galerkin ROM sta-
bilized via Algorithm 2

Model Operations CPU time (sec)

FOM Time-Integration 7.10×104

ROM – offline stage

Snapshot collection (FOM time-integration) 7.10×104

Loading of matrices/snapshots 5.17
POD 1.09×101

Projection 2.55×101

Optimization∗ 8.79×101

ROM – online stage Time-Integration 6.78

∗Optimization times reported are means of the time required to solve (6.24) with real eigenvalues and the time

required to solve (6.24) with complex-conjugate eigenvalues.

6.3 Summary

It is demonstrated in this chapter that a discrete counterpart of the symmetry inner product devel-
oped in Chapter 5 is a weightedL2 inner product obtained by solving a Lyapunov equation, first
derived in [81] by Rowleyet al. For completeness, this inner product, referred to as the “Lyapunov
inner product”, is re-derived here, and it is shown using theenergy method that this inner product
gives rise to stable ROMs constructed via discrete projection. The performance of POD ROMs
constructed using the symmetry and Lyapunov inner productsis assessed on several numerical
examples for which POD ROMs constructed in theL2 inner product manifest instabilities.

The key properties of the symmetry inner product and Lyapunov inner product are summarized in
Table 6.13. Both inner products are weightedL2 inner products and have the same origin: they
are induced by the Lyapunov function for the governing system of equations. The symmetry inner
product is a continuous inner product derived for a specific PDE system of the form (5.1). Projec-
tion in this inner product requires access to the governing PDEs, which gives rise to a projection
algorithm that is embedded. The Lyapunov inner product is discrete, on the other hand, and op-
erates on an LTI system of the form (4.18) arising from the discretization of a PDE of the form
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Table 6.13. Comparison of symmetry inner product and Lya-
punov inner product

Symmetry Inner Product (5.16) Lyapunov Inner Product (6.10)

Continuous Discrete
For linear PDE system of the form For linear ODE system of the form

q̇+A i
∂q
∂xi

+K i j
∂ 2q

∂xi∂x j
+Gq = f ẋN = AxN

Defined for unstable systems but
Undefined for unstable systems

time-stability of ROM is not guaranteed
Induced by Lyapunov function Induced by Lyapunov function
for the system for the system
Equation specific Black-box

Derived analytically in closed form
Computed numerically
by solving a Lyapunov equation

Sparse Dense

(4.17) in space using some numerical scheme, e.g., the finiteelement method. Projection in the
Lyapunov inner product is therefore a black-box algorithm,as only theA, B andC matrices in
(4.18) are needed; in particular, access to the governing equations isnot required. The symmetric
positive definite matrix that defines the Lyapunov inner product can also be computed numerically
in a black-box fashion by solving a Lyapunov equation. The existence of a solution to this Lya-
punov equation is certain only if the full order system (4.18) is stable; hence the Lyapunov inner
product is not defined for unstable systems. In contrast, thesymmetry inner productis defined
for unstable systems. In this case, a ROM constructed in thisinner product will be energy-stable,
by construction. However, it will not be time-stable, i.e.,it may produce (physical) solutions that
are unbounded ast → ∞. The discussion above may lead the reader to prefer the Lyapunov in-
ner product to the symmetry inner product, as the former inner product can be computed in a
black-box fashion for any stable linear system, and can be used to build a ROM for this system
without accessing the PDEs. One of the biggest drawbacks of the Lyapunov inner product projec-
tion approach involves its large computational cost. To solve numerically the Lyapunov equation
that defines this inner product,O(N3) operations are required. Moreover, since the matrix that
defines the Lyapunov inner product is typically dense (in contrast to the matrix defining the sym-
metry inner product, which is sparse), at leastO(N2) storage is required [43]. As a result, creating
ROMs using the Lyapunov inner product may not be practical for systems of very large size. The
Lyapunov inner product may nonetheless be preferable to balanced truncation, which requires the
solution of two Lyapunov equations, and the storage of two Gramians, in addition to Cholesky
and eigenvalue factorization of these Gramians. For large-scale unsteady problems, the symmetry
inner product combined with the continuous projection approach is recommended by the authors,
despite its more involved implementation.

In the second part of this chapter, a new approach for stabilizing unstable reduced order models for
LTI systems through ana posterioripost-processing step applied to the algebraic ROM system is
developed. This stabilization step consists of a reassignment of the eigenvalues of the ROM system
matrix. First, it is shown how the system’s eigenvalues can be modified by adding to the system a
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linear control term, and solving for the control matrix using full state feedback (a.k.a. pole place-
ment) algorithms from control theory. This approach will yield a stable ROM provided the ROM
system’s unstable eigenvalues are controllable and observable; however, although the stabilized
ROM will be stable, it may not be accurate. To ensure accuracyin the stabilized ROM, a second
algorithm is developed, in which the eigenvalues of the stabilized ROM system are computed by
solving a constrained nonlinear least-squares optimization problem in which the error in the ROM
output is minimized. This problem is small (< O(M), whereM is the number of dofs in the ROM),
and therefore computationally inexpensive to solve using standard optimization algorithms. The
second stabilization algorithm is the primary contribution of this chapter, but both algorithms are
presented and evaluated, as the first algorithm led to the formulation of the second. The proposed
ROM stabilization approaches are applicable to ROMs constructed usingany choice of reduced
basis foranyapplication. The two algorithms are evaluated on two benchmarks: the ISS problem
and the electrostatically actuated beam problem. Numerical tests reveal that the second algorithm
effectively stabilizes an unstable ROM, delivering a modified ROM that is both stable as well as
accurate.

6.4 Prospects for future work

An interesting and useful future research endeavor is the extension of the “ROM stabilization
via eigenvalue reassignment” method (Algorithm 2) described in Section 6.2 to general nonlinear
problems and predictive applications.

For nonlinear problems with stable fixed points and/or limitcycle solutions (e.g., the classical
fluid mechanics problem involving flow around a cylinder), a natural extension of the algorithm
would involve: (1) determining the stable fixed points of thesystem, (2) linearizing the system
around these points, and (3) using the algorithms developedin Section 6.2 of this report to stabilize
the linearized system. Extensions of Algorithm 2 to genericnonlinear problems would require a
precise definition of stability, and perhaps a reformulation of the optimization problem (6.24), as
it is likely not possible to work out analytically the expression for yM(t) (6.23) for the general
nonlinear case.

In order to use Algorithm 2 in predictive applications, the stabilized ROM must be constructed
such that it is robust with respect to parameter changes. Forthis, an error indicator that would
estimate the ROM error in a regime for which high-fidelity snapshots are not available is required.
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Appendix A

A.1 Gronwall’s lemma

Gronwall’s lemma (also known as Gronwall’s inequality) allows one to bound a function that is
known to satisfy a certain differential or integral inequality by the solution of the corresponding
differential or integral equation [41]. The differential form of this inequality is used herein:

ẋ(t)≤ β (t)x(t) ⇒ x(T)≤ x(0)e
∫ T
0 β (s)ds, (A.1)

for β ∈ L2, t,T ≥ 0.

A.2 Linearized compressible Navier-Stokes equations withthe
viscous work terms included

In Section 5.2.2, the linearized compressible Navier-Stokes equations with the viscous work terms
omitted were given (5.26). The full version of these equations, namely the equations with the
viscous work terms included, is now given. In this case, the governing system (in non-dimensional
form; Appendix A.3) is as follows:

q̇′+(A i− Ã i)q′,i− [K i j q′, j ],i +Gq′ = 0, (A.2)

instead of (5.26) where thẽA i for i = 1,2,3 matrices are given by:

Ã1≡ 2
ReT̄













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

τ̄11 τ̄12τ̄13 0 0
0 0 0 0 0













, Ã2≡ 2
ReT̄













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

τ̄21 τ̄22 τ̄23 0 0
0 0 0 0 0













,

Ã3≡ 2
ReT̄













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

τ̄31 τ̄32 τ̄33 0 0
0 0 0 0 0













.

(A.3)

Here,Rdenotes the dimensionless gas constant (Appendix A.3). Theremaining matrices in (A.2),
as well as the symbols appearing in (A.3), are defined in Section 5.2.2.
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Note that the stability result of Corollary 5.2.1 breaks down in the casẽA i 6= /0, i.e., in the presence
of viscous work, which can offset the energy balance of the ROM system. To the authors’ knowl-
edge, the viscous work terms are invariably neglected from the linearized compressible Navier-
Stokes equations by researchers studying energy-stability of these equations [47, 4]. The exten-
sion of the energy-stability symmetrization approach presented in Section 5.2 to the linearized
compressible Navier-Stokes equations in which the viscouswork terms are retained (A.2) would
be a worthwhile future research endeavor.

A.3 Non-dimensionalization of the compressible Navier-Stokes
equations

In this section, the non-dimensionalization of the compressible Navier-Stokes equations is detailed.
Let ure f , ρre f , Tre f and Lre f denote the reference (non-dimensionalization) values forthe fluid
velocities, density, temperature and length scales respectively. Given these values, the reference
pressure, speed of sound and time scales are given by:

pre f = ρre fu2
re f ,

cre f =
√

γRTre f ,

tre f =
Lre f
ure f

,

(A.4)

whereR is the universal gas constant andγ is the ratio of specific heats. For viscous problems, let
µre f denote reference value for the viscosityµ. Then, the reference value for the viscosityλ is

λre f =−2
3

µre f , (A.5)

from Stokes’ hypothesis. Typically the reference value forthe thermal diffusivityκre f is given.

If T denotes the dimensional temperature andT∗ denotes the dimensionless temperature, the rela-
tionship between the two is:

T∗ =
p∗

ρ∗R∗
, (A.6)

wherep∗ andρ∗ denote the dimensionless pressure and density respectively, andR∗ denotes the
dimensionless gas constant:

R∗ =
RTre f

c2
re f

, (A.7)

with R denoting the dimensional gas constant.

The Reynolds number,Re, is given by

Re=
ρre fcre fLre f

µre f
, (A.8)
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and the Prandtl number,Pr, is given by

Pr =
cpµre f

κre f
, (A.9)

with cp denoting the specific heat at constant pressure. The reference Mach number is:

Mre f =
ure f

cre f
. (A.10)

For the isentropic compressible Navier-Stokes equations (Section 5.3.3), the reference value for
the enthalpyh, denoted byhre f , is needed. It is straightforward to work out thathre f is given by:

hre f =
pre f

ρre f
= u2

re f . (A.11)

(A.11) is also the reference value for the internal energy,e:

ere f = u2
re f . (A.12)

A.4 Proof that the total energy inner product (5.59) for the
compressible Navier-Stokes is a valid inner product

Here, it is verified that (5.59) is a valid inner product, by checking that the four inner product
axioms hold.

(i) Bilinearity:
(

q1+q2,q3
)

E =
(

q1,q3
)

E +
(

q2,q3
)

E.

(

q1 +q2,q3
)

E =
∫

Ω
1
2

(

(a(1) +a(2))b(3) +a(3)(b(1) +b(2))+ (a(1)
1 +a(2)

1 )a(3)
1 +(a(1)

2 +a(2)
2 )a(3)

2

+(a(1)
3 +a(2)

3 )a(3)
3

)

dΩ

=
∫

Ω
1
2

(

a(1)b(3) +a(2)b(3) +a(3)b(1) +a(3)b(2) +a(1)
1 a(3)

1 +a(2)
1 a(3)

1 +a(1)
2 a(3)

2

+a(2)
2 a(3)

2 +a(1)
3 a(3)

3 +a(2)
3 a(3)

3

)

dΩ

=
∫

Ω
1
2

(

a(1)b(3) +a(3)b(1) +a(1)
1 a(3)

1 +a(1)
2 a(3)

2 +a(1)
3 a(3)

3

)

dΩ

+
∫

Ω
1
2

(

a(2)b(3) +a(3)b(2) +a(2)
1 a(3)

1 +a(2)
2 a(3)

2 +a(2)
3 a(3)

3

)

dΩ
=
(

q1,q3
)

E +
(

q2,q3
)

E .
(A.13)

(ii) Linearity:
(

αq1,q2
)

E = α
(

q1,q2
)

E, for α ∈R.

(

αq1,q1
)

E =
∫

Ω
1
2

(

αa(1)b(2) + αa(2)b(1) + αa(1)
1 a(2)

1 + αa(1)
2 a(2)

2 + αa(1)
3 a(2)

3

)

dΩ
= α

(

q1,q2
)

E .
(A.14)
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(iii) Symmetry:
(

q1,q2
)

E =
(

q2,q1
)

E.

(

q1,q2
)

E =
∫

Ω
1
2

(

a(1)b(2) +a(2)b(1) +a(1)
1 a(2)

1 +a(1)
2 a(2)

2 +a(1)
3 a(2)

3

)

dΩ
=
(

q2,q1
)

E .
(A.15)

(iv) Positive definiteness:(q,q)E ≥ 0 and(q,q)E = 0 if and only ifq = 0.

(q,q)E = ET ≥ 0 (A.16)

whereET is defined in (5.60), sinceρ,e≥ 0 (to be physical).

Suppose(q,q)E = 0. Then, from (5.60):
∫

Ω
(

ab+ 1
2[a2

1+a2
2 +a2

3]
)

dΩ = 0, (A.17)

or
1
2

∫

Ω[a2
1+a2

2+a2
3]dΩ =−

∫

Ω abdΩ. (A.18)

The left-hand-side of (A.18) is necessarily≥ 0. The right-hand-side is necessarily≤ 0 since
ab= a2e= ρe andρ,e≥ 0. The only way for this to be true is ifq = 0.

�

A.5 Boundary conditions for compressible fluid ROMs constructed
via continuous projection

Per the discussion in Section 4.3.3, ROMs constructed usingthe continuous projection approach
may not automatically inherit the boundary conditions of the underlying FOM. LetΩ ∈R3 denote
the domain on which a problem of interest is posed, and let∂Ω denote the boundary of this domain.
It is useful to partition∂Ω as follows:

∂Ω = ∂ΩF ∪∂ΩW∪∂ΩI , (A.19)

with ∂ΩF ∩ ∂ΩW ∩ ∂ΩI = /0. In (A.19), ∂ΩF , ∂ΩW and ∂ΩI denote the far-field, solid wall
and inflow boundaries, respectively. Figure A.1 illustrates the partition of∂Ω (A.19) for a cavity
geometry. In this figure, boundary 1 represents∂ΩI , boundary 2 represents∂ΩF , and boundary 3
represents∂ΩW.

For viscous fluid problems, the relevant boundary conditionon∂ΩW is typically a no-slip condition
on the velocities and adiabatic wall condition on the temperature [55]; for inviscid fluid problems,
a slip wall condition on the velocities is the physically relevant condition on∂ΩW [57].

The far-field boundary∂ΩF is an artificial boundary introduced due to the fact that the boundary
Ω used in a fluid simulation is by construction finite, in contrast to the infinite physical space
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Figure A.1. Partition of boundary∂Ω for the cavity configuration
(1 = ∂ΩI = inflow boundary, 2 =∂ΩF = far-field boundary, 3 =
∂ΩW = solid wall boundary)

on which the physical problem is posed. Without far-field boundary conditions, non-physical
reflections of unsteady waves may be observed in the far-field. These unwanted reflections can
affect the accuracy of the simulation and possibly lead to numerical instability.

At the inflow boundary∂ΩI , an inflow solution profile is typically prescribed using characteristic
variables [57].

One way to implement boundary conditions in a ROM constructed using the continuous projection
method is through a weak formulation. Consider a system of conservation laws of the form (5.1).
Let φφφk(x) denote a reduced basis mode. Projecting (5.1) ontoφφφk and integrating the viscous terms
by parts, the following is obtained:

∫

Ω q̇φφφkdΩ+
∫

Ω A i
∂q
∂xi

φφφkdΩ+
∫

Ω
∂K i j

∂x j

∂q
∂xi

φφφkdΩ+
∫

Ω
∂φφφk
∂x j

K i j
∂q
∂xi

dΩ

−
∫

∂Ω K i j φφφk
∂q
∂xi

n jdΓ+
∫

Ω GqφφφkdΩ =
∫

Ω fφφφ kdΩ,
(A.20)

for k = 1, ...,M, wheren j is the jth component of the outward facing normal to∂Ω. The reader can
observe from (A.20) that if a homogeneous Dirichlet boundary condition is desired on∂Ω (e.g., the
no-slip boundary condition) and the reduced bases modesφφφk satisfy this boundary condition, the
boundary integral in (A.20) will vanish, and no special implementation of the boundary condition
in the ROM is needed. Otherwise, the boundary condition is implemented by substituting the value
of φφφk and/or its derivatives into the boundary integral in (A.20). In the case of an inhomogeneous
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Dirichlet boundary condition, it may be necessary to integrate the inviscid terms in (A.20) by parts
as well in order to apply the boundary condition [57].

For a discussion of the implementation of solid wall boundary conditions in a compressible fluid
ROM constructed using continuous projection, the reader isreferred to [57, 19]. Here, some
discussion of the far-field boundary condition and its implementation is provided. A numerical
study of this boundary condition on ROM stability and accuracy was begun during this project,
and it would be worthwhile to continue this work in the future.

Note that an additional way to ensure that a ROM solution respects the FOM boundary conditions
in the case of the nonlinear compressible Navier-Stokes equations (one that may be studied in
future work) is to factor out the base flow (represented by thefirst POD mode; Figure 5.15(a)) from
the solution vector:q(x, t)− q̄(x). In the approach taken in Chapter 5, the nonlinear ROMs are
constructed for the full state vectorq(x, t). Suppose the POD modes satisfy some steady non-zero
Dirichlet boundary conditions consistent with those in theFOM. If the base flow̄q is not subtracted
from the ROM solution (a linear combination of these modes),its value at the boundaries could
evolve in time, leading to incorrect dynamics predicted by the ROM [14].

A.5.1 Non-reflecting far-field boundary conditions implemented via the sponge
region method

As discussed above, an appropriate far-field boundary condition is one that will suppress the reflec-
tion of waves from the outer computational boundaries (boundary 2 in Figure A.1). This boundary
condition, known as the non-reflecting boundary condition,can be implemented using a sponge
region method. LetΩsponge⊂ Ω denote the sponge region, a region near the outflow boundary
(shaded in yellow in Figure A.1). Suppose, without loss of generality, that the sponge region is
given by:

Ωsponge≡
{

x2 : x2,s≤ x2≤ x2,max,x1,x3 ∈Ω
}

, (A.21)

whereΩ is a domain whose boundaries are aligned with thex1, x2 andx3 coordinate axes, with
maxx2{Ω} = x2,max∈ R andx2,s ∈ R, with x2,s < x2,max. Suppose also that the governing PDEs
have the form:

∂q
∂ t

+L (q)+N (q) = 0, (A.22)

whereN is the nonlinear operator,L is the linear operator, andq is the vector of unknowns.
The sponge region implementation of the far-field non-reflecting boundary condition amounts to
adding a source termfspongeto (A.22) to yield a system:

∂q
∂ t

+L (q)+N (q) = fsponge(q), (A.23)

where

fsponge(q) =

{

σsponge

(

x2−x2,s
x2,max−x2,s

)(

qtarget−q
∆t

)

, in Ωsponge

0, otherwise.
(A.24)
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In (A.24), qtarget is a vector of “target” values for the variables in the spongeregionΩsponge, and
σsponge∈R is a parameter controlling the “strength” of the sponge region. The reader can observe
by examining (A.24) that the sponge region implementation of the far-field boundary condition
is effectively a penalty formulation, withσspongerepresenting a penalty parameter that penalizes
the deviation ofq from qtarget in the far-field. The symbol∆t in (A.24) is the time step used in
advancing numerically the simulation forward in time.

Plugging (A.24) into (A.23) and rearranging, the followingis obtained:

∂q
∂ t

+L (q)+Lsponge(q)+N (q) = ssponge, (A.25)

where

Lsponge(q) =
σsponge

∆t

(

max{x2−x2,s,0}
x2,max−x2,s

)

q, (A.26)

and

ssponge=
σsponge

∆t

(

max{x2−x2,s,0}
x2,max−x2,s

)

qtarget. (A.27)

The operator defined byLsponge(A.26) gives rise to a mass-like matrix upon discretization. The
vector (A.27) is a forcing (load vector) term.

In the special case of the linearized PDEs, the system with the sponge layer source term has the
form:

∂q′

∂ t
+L (q′) = fsponge(q′), (A.28)

whereq′ = q− q̄ is the fluctuation vector, with̄q denoting the (steady) mean flow. In this case,

fsponge(q′) =

{

σsponge

(

x2−x2,s
x2,max−x2,s

)(

q′target−q′

∆t

)

, in Ωsponge

0, otherwise
(A.29)

whereq′Target = qTarget− q̄.

The capability to specify a non-reflecting boundary condition via the sponge region method has
been added toSpirit as a part of this LDRD project. The implementation of this boundary
condition has been verified on a simple test case involving inviscid flow inside a duct (below). The
example demonstrates that a ROM with no boundary conditionsconstructed from a FOM in which
the non-reflecting far-field boundary condition is specifiedmay not reproduce accurately the FOM
solution dynamics. This issue can be remedied by implementing the far-field boundary condition in
the ROM using the sponge region method. It would be worthwhile to examine the effect of the far-
field non-reflecting boundary condition on the compressiblecavity simulations of interest in future
work. It is conjectured that including the far-field boundary condition can improve the stability
properties of a ROM by damping out any reflections that propagate back into the domain through
the outflow boundary, which could destabilize the ROM. It is also conjectured, as suggested in
[39], that if the domain is large enough, the implementationof the far-field boundary condition
may not be necessary.
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Proof of concept: non-reflecting far-field sponge region boundary condition applied to duct
pressure pulse test case

The implementation of the non-reflecting far-field boundarycondition via the sponge region method
in Spirit is tested on a 1D test case involving an inviscid pressure pulse in a duct. The domain
Ω = (0,50) ∈ R is discretized using 501 points, and extruded in thex2 andx3 directions by one
element to yield a 3D mesh for theSpirit run. The free-stream and reference conditions are as
follows:

pre f = 101,325 Pa,
Tre f = 300 K,

ure f = 104.4 m/s,
ρre f = 1.172 kg/m3.

(A.30)

The problem is inviscid. The pressure pulse is triggered by asinusoidal forcing for thex1–
momentum equation of the form

fu1(t) = 0.005ure f cos(200πt), (A.31)

in the region for whichx1 ∈ (1,1.5). In the high-fidelity fluid codeSIGMA CFD, a sponge layer
far-field boundary condition is prescribed near the outflow boundary

Ωsponge= {x1 : 40≤ x1≤ 50}. (A.32)

The boundary condition is of the form (A.24) but withx1 replacingx2. The parametersσspongeand
qTarget are as follows:

σsponge= 0.01, (A.33)

qtarget =













u1,target

u2,target

u3,target

ρtarget

Ttarget













=













104.4 m/s
0
0

1.172 kg/m3

300 K













, (A.34)

(in dimensional variables). The high-fidelity simulation of the duct pressure pulse test case is run in
SIGMA CFD until time Tmax= 0.5 seconds. A total ofKmax= 1000 snapshots are collected (taken
every∆tsnap= 5× 10−4 seconds), from which a 20 mode POD basis is computed. A 20 mode
POD/Galerkin ROM is then constructed for the linearized compressible Euler equations1 using the
L2 inner product, both with (σsponge= 0.01) and without (σsponge= 0) the sponge region boundary
condition applied in the far-field. Figure A.2 shows a time history of the ROM coefficientsa1(t)
anda2(t) compared with the projection of modes one and two onto the snapshots (5.69) for both
cases. The results are as expected: the ROM with the sponge layer enforcement of the far-field
boundary condition (Figure A.2(b)) represents much betterthe snapshot dynamics than the ROM
without the sponge layer enforcement of the far-field boundary condition (Figure A.2(a)). Since
the POD modes do not satisfy strongly the far-field boundary condition, the latter ROM is not fully
consistent with the FOM.

1The linearized equations are appropriate here as the problem dynamics are effectively linear.
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Figure A.2. Time history of modal amplitudes forM = 20 mode
L2 linear ROMs (duct pressure test case)

A.6 Additional results for viscous laminar cavity problem with
Kmax= 500snapshots

In this section, some additional results for the viscous laminar cavity problem (considered in Sec-
tion 5.5.3) are given. The same Reynolds numbers,Re≈ 1000 andRe≈ 1500, as before are
considered. Now, however, a total ofKmax= 500 snapshots are collected fromSIGMA CFD, taken
every∆tsnap= 1.0×10−4 seconds, starting at timet = 5.0×10−2 seconds until timeTmax= 0.1
seconds. The snapshots are used to construct POD bases of size 5, 10, 15 and 20 modes in the
various inner products evaluated (for each Reynolds numberconsidered), as before, but now the
ROMs are run up to timeTmax= 0.1 seconds. The snapshot energies captured by the POD bases are
approximately the same as before (Table 5.8), and the decay of the singular values of the snapshot
matrix is also comparable (Figure 5.16).

Tables A.1–A.2 reveal that the ROMs evaluated (Table 5.2) donot perform very well for this in-
stance of the problem. Most of the ROMs go unstable. The most stable and accurate ROMs are
those constructed for the isentropic compressible Navier-Stokes equations. It is interesting that
the isentropic ROMs constructed in the stagnation energy and stagnation enthalpy inner products
(5.49) exhibit an instability. The cause of this instability should be investigated in future work.
It is worthwhile to comment that the Reynolds numbers considered here are much higher than
the Reynolds number considered in [81], an earlier work in which the effectiveness of ROMs
constructed using the stagnation energy and stagnation enthalpy inner products (5.49) for the isen-
tropic compressible Navier-Stokes equations was evaluated. As noted earlier, the use of an energy
inner product to do the Galerkin projection step of the modelreduction does not guarantee that the
stability of an equilibrium point other than the origin is preserved, nor does it guarantee that the
stability of limit cycles is preserved [81]. Moreover, an equilibrium point of a dynamical system is
not necessarily an attractor of the system. Hence, a ROM constructed in an energy inner product
may not preserve a Navier-Stokes attractor. This may be whatis happening here. It is also possible
that boundary effects at the far-field boundary of the cavityare destabilizing the ROM (Appendix
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A.5). This can be remedied by implementing a non-reflecting boundary condition at the far-field
boundary in the ROM or solving the problem on a larger domain so that the boundary effects are
negligible [39].

It is noted that a ROM with much better stability properties was obtained when the snapshot set
employed to compute the POD basis includes the initial transient present in the high-fidelity so-
lution between timet = 0 and timet = 5.0×10−2 seconds (results not shown here). Given that
the quality of the ROM seems to be highly dependent on which snapshots are employed to con-
struct the POD basis, it would be worthwhile to examine the effect of various snapshot collection
strategies (e.g., [70, 82, 15]) on ROM stability and accuracy in future work.

Table A.1. ROM relative errorsErel,q (viscous laminar cavity,
Re≈ 1000,K = 500 snapshots)

Physics
Inner

product
M = 5 M = 10 M = 15 M = 20

Linearized
compr N-S

L2 5.56 5.63 34.0 33.3
symm 5.05 5.11 27.5 27.1

Nonlinear compr
isentropic N-S

L2 7.99×10−2 5.96×10−2 9.39×10−2 8.34×10−2

stag ene 3.94×10−2 4.06×10−2 NaN NaN
stag enth 4.05×10−2 4.02×10−2 NaN NaN

ζ–form nonlinear
compr N-S

L2 7.34×10−1 2.54×10−1 1.58×10−1 NaN

Nonlinear
compr N-S

L2 NaN 1.27×10−1 NaN 7.06×10−2

Table A.2. ROM relative errorsErel,q (viscous laminar cavity,
Re≈ 1500,K = 500 snapshots)

Physics
Inner

product
M = 5 M = 10 M = 15 M = 20

Linearized
compr N-S

L2 9.13 9.26 9.08 13.2
symm 8.35 8.55 8.54 11.2

Nonlinear compr
isentropic N-S

L2 9.34×10−2 1.26×10−1 4.43×10−2 8.44×10−2

stag ene 5.28×10−2 5.54×10−2 6.58×10−2 NaN
stag enth 5.59×10−2 5.81×10−2 6.58×10−2 NaN

ζ–form nonlinear
compr N-S

L2 7.98×10−1 NaN NaN NaN

Nonlinear
compr N-S

L2 NaN 2.41×10−1 NaN 1.88×10−1

A.7 Balanced truncation algorithm for model reduction

The balanced truncation algorithm, first introduced by Moore [73], assumes a semi-discrete full
order model of the form (4.18). The linear system (4.18) is first transformed into a balanced form
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that isolates observable and reachable (or controllable) modes. This is achieved by simultaneously
diagonalizing the reachability (or controllability) and observability Gramians. The reachability (or
controllability) Gramian (Chapter 30 of [23])

P≡
∫ ∞

0
eAtBBTeAT tdt, (A.35)

is the unique symmetric (at least) positive semi-definite solution of the Lyapunov equation

AP+PAT +BBT = 0. (A.36)

The observability Gramian (Chapter 30 of [23])

Q≡
∫ ∞

0
eAT tCTCeAtdt, (A.37)

is the unique symmetric (at least) positive semi-definite solution of the Lyapunov equation

ATQ+QA +CTC = 0. (A.38)

It will be assumed herein that the matrixA defining the full order system (4.18) is stable, i.e., it has
no eigenvalues with a positive real part. It will also be assumed(A,C) is observable and(A,B)
is reachable (controllable). If this is true, the Lyapunov equations (A.36) and (A.38) will have
positive definite solutionsP andQ respectively (Chapter 6 of [62]). For a discussion of balanced
truncation applied to unstable systems, the reader is referred to [21].

The balanced truncation algorithm is summarized below for the specific case of real system matri-
ces2 A, B andC. First, the reachability GramianP is obtained by solving the Lyapunov equation
(A.36). Next, the observability GramianQ is obtained by solving the Lyapunov equation (A.38).
The Cholesky factorization ofP is computed,

P = UUT . (A.39)

followed by an eigenvalue decomposition ofUTQU:

UTQU = KΣΣΣ2KT . (A.40)

The balancing transformation matrices:

Tbal = ΣΣΣ1/2KTU−1, T−1
bal = UKΣΣΣ−1/2, (A.41)

can now be computed3, where the entries ofΣΣΣ are in decreasing order. The change of variables
x̃N(t) = TbalxN(t) is applied to the full-order LTI system (4.18) to yield:

˙̃xN(t) = TbalAT−1
balx̃N(t)+TbalBuP(t),

yQN(t) = CT−1
balx̃N(t).

(A.42)

2In the case these matrices are complex, the transpose operation T in the algorithm (and all analysis of this algo-
rithm) should be replaced with a Hermitian transposeH .

3In practice, the transformation matrices (A.41) are typically computed asTbal = VTZT , andT−1
bal = UW, where

Z is the Cholesky factor of the observability Gramian (Q = ZZT ), andW is the left singular vector ofUTZ (UTZ =
WΣΣΣVT ). This is due to numerical stability issues that could arisein computingΣΣΣ−1/2 in (A.41).
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Next, the matrices̃A ≡ TbalAT−1
bal, B̃≡ TbalB, C̃≡ CT−1

bal are partitioned as follows:

Ã =

(

Ã11 Ã12

Ã21 Ã22

)

, B̃ =

(

B̃1

B̃2

)

,

C̃ =
(

C̃1 C̃2
)

.

(A.43)

Here, the blocks with subscript 1 correspond to the most observable and reachable states, and
blocks with subscript 2 correspond to the least observable and reachable states. Finally, the reduced
system for a ROM of sizeM is given by:

ẋM(t) = AMxM(t)+BMuP(t),
yQM(t) = CMxM(t),

(A.44)

whereAM = Ã11, BM = B̃1, CM = C̃1. The left and right reduced bases are given respectively by:

ΨΨΨM = TT
bal(:,1 : M), ΦΦΦM = Sbal(:,1 : M), (A.45)

whereSbal ≡ T−1
bal.

In effect, balanced truncation is a method for computing thetest and trial basesΨΨΨM andΦΦΦM in
(4.20). Given the test and trial bases defined in (A.45), the ROM system matrices (A.44) can be
obtained from the formulas (4.21). The entries of the diagonal matrix ΣΣΣ in (A.41) are known as
the Hankel singular values of the system (4.18). Assuming a ROM of sizeM has been constructed
using balanced truncation, the following error bound on theoutput can be shown [95]:

||yQN(t)−yQM(t)||2≤ 2
N

∑
i=M+1

σi ||uP(t)||2. (A.46)

Generally, balanced truncation is viewed as the “gold standard” in model reduction. Although it
is not optimal in the sense that there may be other ROMs with smaller error norms, the approach
hasa priori error bounds that are close to the lowest bounds achievable by any reduced order
model [79]. Unfortunately, balanced truncation becomes computationally intractable for systems
of very large dimension (e.g., of sizeN≥ 10,000), and hence is not practical for many systems of
physical interest [81]. This is due to the high computational cost of solving the Lyapunov equations
(A.36) and (A.38) for the reachability and observability Gramians (O(N3) operations). The storage
requirements of balanced truncation can be prohibitive as well. Even efficient iterative schemes
developed for large sparse Lyapunov equations compute the solution to (A.36) and (A.38) in dense
form, and hence requireO(N2) storage [43]. Unlike POD, balanced truncation delivers ROMs that
preserve stability of a stable system (4.18) [73], however.

A.8 Lyapunov inner product associated with balanced trunca-
tion

In comparing the steps of the balanced truncation algorithmwith the discussion in Section 6.1,
the reader may observe some similarities. In particular, both algorithms require the solution of a
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Lyapunov equation for a Gramian used to transform and reducethe system. Here, this connection
is investigated further. In particular, it is shown that thebalanced truncation algorithm (Appendix
A.7) may be viewed as a projection algorithm in a special Lyapunov inner product.

Suppose the stable LTI system (4.18) has been reduced using the balanced truncation model re-
duction algorithm summarized in Appendix A.7. In order to uncover the inner product associated
with balanced truncation, several transformations are required.

The first step is to substitute (A.41) into (A.45). Then, the following expressions for the left and
right bases are obtained:

ΨΨΨT
M = Tbal(1 : M, :) = ΣΣΣ1/2(1 : M, :)KTU−1, (A.47)

ΦΦΦM = Sbal(:,1 : M) = UKΣΣΣ−1/2(:,1 : M). (A.48)

Remark that (A.47) and (A.48) satisfy the following identity:

ΣΣΣ−1(1 : M,1 : M)ΨΨΨT
MP = ΦΦΦT

M, (A.49)

whereP is the reachability Gramian (A.39). It follows that the ROM system matrices in (A.44)
are:

AM = ΨΨΨT
MAΦΦΦ = ΨΨΨT

MAPTΨΨΨMΣΣΣ−1(1 : M,1 : M), (A.50)

BM = ΨΨΨT
MB, (A.51)

CM = CΦΦΦ = CPTΨΨΨMΣΣΣ−1(1 : M,1 : M). (A.52)

Defining
zM(t)≡ ΣΣΣ−1/2(1 : M,1 : M)xM(t), (A.53)

and employing the symmetry property of the reachability Gramian (P = PT), (A.44) becomes:

żM(t) = Ψ̂ΨΨT
MAPΨ̂ΨΨMzM(t)+ Ψ̂ΨΨT

MBuP(t),
yQM(t) = CPΨ̂ΨΨMzM(t),

(A.54)

where
Ψ̂ΨΨM ≡ΨΨΨMΣΣΣ−1/2(1 : M,1 : M). (A.55)

It is clear that (A.54) defines a projection of the original LTI system (4.18) in anL2 inner product
weighted by the reachability Gramian matrixP. This matrix defines a true inner product in the
case whenP is symmetric positive-definite, which will hold if(A,B) is reachable (controllable)4.

A property of balanced truncation is that it preserves stability when applied to stable systems [42]
(Appendix A.7). This result can be proven using the energy method. The proof is analogous to the
proof of Theorem 6.1.1.

4Reachability (a.k.a. controllability) is a standard concept in control theory. The author is referred to [11] for a
detailed discussion of reachability (controllability).
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A.9 Jacobian of objective function in ROM stabilization opti-
mization problem (6.24)

In this section, an analytic expression for the Jacobian of the objective function in the optimization
problem (6.24) for the specific case whenu(t) = 0, y ∈R (there is a single output of interest), and
λ u

i ∈ R is derived. In many cases, it is possible to derive analytically the Jacobian of the objec-
tive function in (6.24) without these simplified assumptions, but this derivation will be problem-
dependent (i.e., it will depend on the specific forcingu(t)). Let yk ≡ yk ∈ R andyk

M ≡ yk
M ∈ R. If

u(t) = 0, the objective function in (6.24) evaluates to:

f = ||F||22, (A.56)

where

F≡











CSexp(Dt1)S−1x(0)−y1

CSexp(Dt2)S−1x(0)−y2

...
CSexp(DtK)S−1x(0)−yK











∈ R
K. (A.57)

Let J denote the Jacobian off (A.56). The reader can verify that

J = 2JT
FF ∈R

L (A.58)

where the(k, l)th entry ofJF is given by

JF(k, l) = tkCSexp(D̂l tk)S
−1x(0), (A.59)

for k = 1, ..,K andl = 1, ...,L. In equation (A.59),

D̂l ≡























0
...

0
λ u

l
0

...
0























∈ R
M×M, (A.60)

that is,D̂l is a matrix with a single entry ofλ u
l in the position(l̂ , l̂), wherel̂ is the position of the

l th reassigned eigenvalue in the original matrixD.

A.10 Additional performance results for ROM stabilization via
eigenvalue reassignment Algorithm 2

The following tables give some additional performance results (the number of unstable eigenval-
ues, the number of upper bound constraints, the number of optimization iterations, the number
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of function evaluations, and the first order optimality at convergence) for Algorithm 2 applied to
the ISS and electrostatically actuated beam problems considered in Section (??). These results
enable one to study how these quantities change asM, the reduced basis size, is increased. The
performance of the interior point method depends more on thenumber of dofs in the optimization
problem (6.24), rather than the basis sizeM directly. For the problems considered herein, asM is
increased, in general so does the number of unstable eigenvalues of the ROM.

Table A.3. Performance offmincon interior point method for
Algorithm 2 applied to ISS problem as a function ofM (real eigen-
values)

M 20 40 60

# unstable eigenvalues 4 5 6
# upper bound constraints 4 5 6
# optimization iterations 29 58 45
# function evaluations 30 59 46

first-order optimality at convergence(|∇L|) 4.00×10−7 9.88×10−7 2.46×10−7

Table A.4. Performance offmincon interior point method for
Algorithm 2 applied to ISS problem as a function ofM (complex-
conjugate eigenvalues)

M 20 40 60

# unstable eigenvalues 4 5 6
# upper bound constraints 3 3 3
# optimization iterations 27 50 62
# function evaluations 30 52 64

first-order optimality at convergence(|∇L|) 5.51×10−7 2.46×10−7 3.94×10−7

Table A.5. Performance offmincon interior point method for
Algorithm 2 applied to electrostatically actuated beam problem as
a function ofM (real eigenvalues)

M 17 34 51

# unstable eigenvalues 4 10 14
# upper bound constraints 4 10 14
# optimization iterations 60 78 96
# function evaluations 64 82 100

first-order optimality at convergence(|∇L|) 2.27×10−7 4.61×10−7 2.13×10−7
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Table A.6. Performance offmincon interior point method for
Algorithm 2 applied to electrostatically actuated beam problem as
a function ofM (complex-conjugate eigenvalues)

M 17 34 51

# unstable eigenvalues 4 10 14
# upper bound constraints 2 5 7
# optimization iterations 31 35 78
# function evaluations 32 36 79

first-order optimality at convergence(|∇L|) 8.43×10−7 6.20×10−6 1.08×10−7

A.11 Flow control using ROMs

Flow control refers to the ability to manipulate a fluid flow tochange its behavior in a desirable
way, e.g., to reduce the noise in the flow, to increase the efficiency of a combustion process, to
modify the stability of a laminar flow, or to reduce structural vibration caused by a flow passing
over a structure. There exist a variety of schemes for open-loop5 as well as closed-loop6 control of
complex physical systems [11, 96]. Unfortunately, for high-fidelity fluid models, the discretized
systems are often too large to be able to apply classical flow control methods. This is especially
the case if an optimal controller is sought in real or near-real time. Because reduced order models
are small and inexpensive by construction, they have a greatpotential for making the flow control
problem feasible.

In the targeted compressible captive-carry problem, a flow control strategy that minimizes cavity
oscillations (i.e., resonances) is sought. Suppose a high speed flow passes over the cavity (Fig-
ure A.3). A shear layer will form at the cavity’s upstream corner. This shear layer will amplify
disturbances in the flow and convect them downstream, scattering them into pressure fluctuations
on the cavity’s downstream wall. These pressure fluctuations will propagate back upstream, and
excite further disturbances in the shear layer near the upstream corner. The result is a feedback
loop of self-sustained cavity oscillations [53, 51]. The pressure fluctuations on the downstream
wall of the cavity translate to large pressure loads within the cavity, which are undesirable as they
can lead to damage of the cavity and/or components within thecavity. Hence, an optimal feedback
controller is one that minimizes the pressure fluctuations on the downstream wall, and therefore
the oscillations within the cavity.

In designing a closed-loop controller for the system described above, it is necessary to have a
sensor (or set of sensors) and an actuator (or set of actuators). The former provides an output
to be controlled, whereas the latter represents an input that can be tuned to achieve the desired
output. Typically in flow control, the controller consists of actuation, either in the form of a body

5An open-loop controller is a non-feedback controller, i.e., a controller that does not use feedback to determine if
its output has achieved the desired goal of the input.

6A closed-loop controller is a feedback controller, i.e., a controller consisting of a set of sensors for the mea-
surement of some system parameter that can communicate witha set of actuators, which can subsequently alter the
dynamics of the underlying system.
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force or boundary actuator (sucking or blowing), in an upstream section of the domain. For the
compressible cavity, a reasonable location to apply the actuation is in a region near the upstream
corner of the cavity where the shear layer originates. A reasonable output of interest is the root-
mean-square pressure fluctuation (p′rms) halfway up the downstream wall of the cavity. This value
correlates well with the pressure loads within the cavity and on the cavity walls. The flow control
configuration is illustrated in Figure A.3.

Following standard control theory terminology [11, 96], let the “plant” refer to the physical system
to be controlled, and let the “estimator” be the model used toestimate the state from which the
controller will be calculated. Here, the plant is the high-fidelity model of the compressible cavity
based on the nonlinear compressible Navier-Stokes equations. Because of its large computational
cost, it is not feasible to use the high-fidelity simulation as the estimator. An alternative is to use
as the estimator a ROM for the high-fidelity model, compute the controller based on the ROM, and
then apply the ROM-based controller to the high-fidelity model (see Figure A.4 for an illustration
of the general approach). This idea has been studied by a number of authors, e.g., Illingworth
et al. [53], Rowleyet al. [82], Barbagelloet al. [17], Bagheriet al. [13], Ilak [52], mostly in
the context of incompressible flow. These works have promoted the use linear control theory, i.e.,
using alinear low-dimensional model of the fluid flow to calculate a feedback controller for the
original nonlinearsystem. Here, the idea is applied to the compressible Navier-Stokes equations.
The ROM-based control approach explored as a part of this project is summarized in the following
steps (illustrated in Figure A.4).

Step 1: Collect snapshots from a nonlinear high-fidelity CFD simulation for some set of inputs
u(t), and construct a POD basis from t his snapshot set.

Step 2: Build a ROM for a linearized version of the governing fluid system.

Step 3: Compute the optimal controller, denoted byuopt(t), using the ROM.

Step 4: Apply the optimal ROM-based controller at the high-fidelitymodel level.

A particular kind of linear controller is amenable to the flowcontrol problem of interest, namely a
linear quadratic regulator (LQR) controller, described indetail in [11, 96]. The optimal LQR con-
troller uopt(t) is one that minimizes (for the configuration of interest) thefollowing cost functional:

J =
1
T

∫ T

0
[p′2wall + τu2

opt]dt, (A.61)

wherep′wall is the pressure fluctuation at the downstream wall of the cavity andτ > 0 is a parameter
that controls the cost of the controluopt. It can be shown [11, 96] that the solution to the LQR
problem is obtained by solving a Lyapunov equation. The numerical solution of this equation is,
in general, tractable only if it is computed for a relativelylow-dimensional model.

The capability to apply body force actuators has been added to theSpirit code as a part of this
LDRD project to enable flow control. As a preliminary step, the proposed ROM-based flow control
approach outlined above is tested on a proof of concept example: a driven inviscid pulse test case.
The design of LQR ROM-based controllers for the compressible cavity may be the subject of future
work.
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Figure A.3. Target cavity flow control problem

A.11.1 Proof of concept: control of a driven inviscid pulse

The ROM-based flow control algorithm outlined above is tested on a simpler problem than the
targeted compressible cavity configuration, namely the problem of a driven inviscid pulse in a
uniform base flow. Consider the compressible Euler equations (5.22) on the 2D domainΩ =
(−1,1)2 in a uniform base flow having the following values:

p̄ = 10.1325 Pa,
T̄ = 300 K,

ρ̄ = p̄
RT̄ = 1.17×10−4 kg/m3,

ū1 = ū2 = ū3 = 0.0 m/s,
c̄ = 347.9693 m/s.

(A.62)

Driving the flow is a force for thex2–momentum equation. The force is given by the following
oscillatory function

fu2(x, t) = (1×10−4)cos(2000πt), (A.63)

and is applied in four elements near the center of the domain,for x ∈ (−0.1,0)2 (Figure A.5). The
high-fidelity solution is obtained in theSIGMA CFD code using a mesh with 3362 nodes. The high-
fidelity simulation is run until timeTmax = 5×10−2 seconds. A total ofKmax= 2500 snapshots
(saved every∆tsnap= 2×10−5 seconds) are collected and used to construct a 20 mode POD basis
using the symmetry inner product (withH given by (5.25)).

The following flow control problem for the driven pulse example is formulated:

Compute the body force actuation uopt(t) in the regionx ∈ (−0.1,0)2 such that the root-mean-
square pressure fluctuation p′rms at the pointx = (1,0) is minimized (black dot in Figure A.5).

The controller is computed using the LQR approach and a symmetry ROM estimator based on the
linearized compressible Euler equations (Section 5.2.1).Once the optimal input is calculated, it is
applied to the high-fidelity simulation for the purpose of testing its efficacy. Effectively, this is a
verification problem, as it is knowna priori what the controller should be:uopt(t) =− fu2(x, t).
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Figure A.4. POD-Based cavity flow control road map

First, the 20 mode symmetry ROM is run in the uncontrolled regime, to verify that it can reproduce
well the dynamics of the FOM. Figure A.6 shows the time history of the modal amplitudesxM,i

compared to the projection of the POD modes onto the snapshots (qCFD,φφφ i) for i = 1,2 (5.69).
One can see good agreement between the ROM coefficients and the projection of the snapshots
onto the POD modes for all times considered. Figure A.7 showsa comparison of the snapshots
with the ROM solution at the time of the 100th snapshot. Again, good agreement is observed.
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Figure A.5. Domain with forced/actuated nodes (red) and re-
sponse node (black) (driven inviscid pulse problem)

Having verified the uncontrolled ROM’s ability to reproducethe snapshots from which it is con-
structed, the sought-after LQR ROM-based controller is calculated using thelqr function in MAT-
LAB’s control toolbox [2]. Figure A.8(a) shows the optimal controlleruopt obtained by the LQR
algorithm. As expected, the optimal controller is precisely the functionuopt(t) = − fu2(x, t) to
machine precision. Figure A.8 (b) showsp′(0,1;t) for the uncontrolled FOM, compared with this
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Figure A.7. Pressure fluctuation contours at time of 100th snap-
shot (driven inviscid pulse problem, uncontrolled)

value when the controller is applied. The reader can observethat the controller effectively wipes
out the pressure fluctuation at the point where it is minimized.
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